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Proof Sketch

Assumption: Parity (Space Inversion) Symmetry

Radioactive RNG

• The random number generators (RNGs) are an indispensable tool in cryptography,

and various methods are known.

• RNGs using radiations from nuclear decays (radioactive RNG) has a relatively long history,

but their security has never been discussed rigorously in literature.

• We here propose a new method of the radioactive RNG that admits a rigorous proof of security.

• The security proof is made possible here by exploiting the parity (space inversion) symmetry arising in the device, the 

property previously unfocused.

• 𝛼-decaying nuclides (e.g. americium (241Am)) emit parity invariant radiation.

• By detecting it with detectors in a parity covariant configuration, one can obtain a random number.

A device which repeatedly outputs number 𝑟 in a certain range.

• The goal of the RNG：

• Uniformity： the output 𝑟 occurs with a uniform distribution.

• Security: The value 𝑟 is unpredictable and unknown to anyone other than the legitimate user.

• Threats to the security：

Components of an RNG may have been tampered with by the Eavesdropper,

and the eavesdropper can tamper with the RNG to make 𝑟 predictable.

• Procedure:

Step 1: Measure radiations emitted from the source in time bins 𝑖 = 1,… , 𝑁. 

Then record the timings of detections  𝑖 = 𝑖1, … , 𝑖𝑛det

Step 2： Apply a randomness extraction (e.g. random matrix) on  𝑖, and obtain random number 𝑟.

Time bin 𝑖 1 2 3 4 5 6

Detection yes no yes no no yes

timing of detections  𝑖 = 1, 3, 6

Randomness extractor 𝑓𝑠
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• Security of random number 𝑟 is measured by the smooth min-entropy 𝐻min
𝛿  𝐼|𝐸 ．

• 𝐻min
𝛿  𝐼|𝐸 = ambiguity of detection timing  𝑖, seen from the eavesdropper 𝐸.

• By applying the randomness extraction on  𝑖,

one can extract the secure random number 𝑟 of ≅ 𝐻min
𝛿  𝐼|𝐸 bits.

• Theorem Under condition of the previous page, we have

𝐻min
𝛿  𝐼|𝐸 ≥ 𝑛thr − 𝑛multi − 2𝑛dark.

• I.e., one can extract the secure random number 𝑟 of roughly 𝑛thr − 𝑛multi − 2𝑛dark bits．

• The security is guaranteed by using the parity symmetry of the device.

• The parity symmetry can be realized by the following conditions.

• Condition (a)： The state of radiated particles is always parity invariant.

𝑃𝐴𝜌𝐴𝐸 𝑡 𝑃𝐴 = 𝜌𝐴𝐸 𝑡 .

where ℋ𝐴 =Deg. of freedom of radiated particles,

𝑃𝐴 = Parity (space inversion) operator in ℋ𝐴,

ℋ𝐸 = Deg. of freedom of Eavesdropper.

• Condition (b): Detector D is housed within a hemisphere around the source.

• Condition (c): For probability more than 1 − 𝛿, the following ineqs. hold:

#detection events ≥ 𝑛thr,  #multi-particle emission events≤ 𝑛multi,

#dark counts events ≤ 𝑛dark (Out of 𝑁 time bins).
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• Observation 1:

There is a one-to-one correspondence between detections  𝑧 and detection timings  𝑖

⇒ 𝐻min
 𝐼|𝐸 = 𝐻min

 𝑍|𝐸 = the min-entropy of  𝑧

⇒ It suffices to lower bound 𝐻min
 𝑍|𝐸

Detection’   𝑧 = 1, 0, 1, 0, 0, 1

Time bin 𝑖 1 2 3 4 5 6

Detection yes no yes no no yes

Detection timings   𝑖 = 1, 3, 6

Rewrite
“no” → 0,
“yes”→ 1

• Observation 2:  “Space inversion (parity transf.) of the device” = “bit flip of 𝑧𝑖”
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For the sake of simplicity, we temporarily consider the following ideal case

In this case,
“No detection by 𝐷” ⟺
“The particle went upward”

Thus the whole situation is
equivalent to ⟹

The corresponding projection 

operators 𝐸𝐴
↑, 𝐸𝐴

↓ are covariant
under the parity transf. 𝑃𝐴

𝑃𝐴𝐸𝐴
↑𝑃𝐴 = 𝐸𝐴

↓
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• State 𝜌𝐴𝐸 before measurement is parity invariant; 𝑃𝐴𝜌𝐴𝐸𝑃𝐴 = 𝜌𝐴𝐸 . (Condition (a))

• Eve’s state after Alice’s measurement is independent of the measurement result (↑, ↓).

𝜌𝐸
↑ = tr𝐴 𝐸𝐴

↑𝜌𝐴𝐸 = tr𝐴 𝑃𝐴𝐸𝐴
↑𝑃𝐴𝑃𝐴𝜌𝐴𝐸𝑃𝐴 = tr𝐴 𝐸𝐴

↓𝜌𝐴𝐸 = 𝜌𝐸
↓

• The joint state of Alice’s measurement result 𝑧𝑖 and of Eve takes the form

𝜌𝑍𝑖𝐸
=

1

2
 ↑  ↑ +  ↓  ↓ 𝑍𝑖

⊗ 𝜌𝐸 =
1

2
 0  0 +  1  1 𝑍𝑖

⊗ 𝜌𝐸

• As the same reasoning applies to all bits  𝑧 = 𝑧1, … , 𝑧𝑁 , we have

𝐻min
 𝐼|𝐸 = 𝐻min

 𝑍|𝐸 = 𝑁

𝑧𝑖 is uniformly distributed, and unknown to Eve; hence a secure random number.

• Differences from the ideal situation:

• The vacuum and multi-particle emission events.

• Detector D may not be perfect.

⇒ None or both (instead of single one)

of detectors 𝐷↓, 𝐷↑ can go off.

• Still, if one focuses on single detection events only,

the argument can be reduced to the ideal case. 

⇒𝐻min
 𝑍|𝐸 ≥ # single detection events

⇒The theorem follows from condition(c)
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The general (non-ideal) case can also be proved similarly.
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