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Main Result:
 The random number generators (RNGs) are an indispensable tool in cryptography,

and various methods are known. Secu rity Of Our RadiaCtive RNG

* RNGs using radiations from nuclear decays (radioactive RNG) has a relatively long history,

but their security has never been discussed rigorously in literature. + Security of random number 7 is measured by the smooth min-entropy Hgnn (flE)-

* We here propose a new method of the radioactive RNG that admits a rigorous proof of security. « HS.. (flE) = ambiguity of detection timing 7, seen from the eavesdropper E.

* By applying the randomness extraction on 1,

* The security proof is made possible here by exploiting the parity (space inversion) symmetry arising in the device, the

one can extract the secure random number r of = Hrflin (f|E) bits.

property previously unfocused.

 Theorem Under condition of the previous page, we have
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Hmin (”E) = Nthr — NMmulti — anark-

* a-decaying nuclides (e.g. americium (***Am)) emit parity invariant radiation.

* By detecting it with detectors in a parity covariant configuration, one can obtain a random number.

* |.e., one can extract the secure random number r of roughly Ny, — Npuiti — 2NMdark Pits-

Random Number Generator (RNG)

A device which repeatedly outputs number r in a certain range. P rO Of S ketC h

* The goal of the RNG:

: . . e Observation 1: Time bin i 1 5 3 4 5 6
* Uniformity: the output 7 occurs with a uniform distribution. e fn l
Detection yes no yes no no yes Rewrite
e Security: The value 7 is unpredictable and unknown to anyone other than the legitimate user. Detection’ Z = ( 1, 0, 1, 0, 0, 1?) ) 3251 (1'
$~\~\~ R\ ”,a
* Threats to the security: o> R L
. Detection timings T=( 1, 3, 6)
Components of an RNG may have been tampered with by the Eavesdropper,
and the eavesdropper can tamper with the RNG to make r predictable. There is a one-to-one correspondence between detections Z and detection timings 1
= Hin (I|E) = Hpin (Z|E) = the min-entropy of Z
Ra d |Oa Ctlve R N G = It suffices to lower bound Hy,ip (Z|E)
* Procedure:
Step 1: Measure radiations emitted from the source in time binsi =1, ..., N.
Then record the timings of detections [ = (i1, e indet) * Observation 2: “Space inversion (parity transf.) of the device” = “bit flip of z;”
Typicall > T . . .
5 zepw m:ln\ I - N For the sake of simplicity, we temporarily consider the following ideal case
/ el Timebini | 1 | 2 | 3| 4| 5 | 6
Source > Detection | yes | no | yes | no | no | yes In this case,
| €-____ - > 1 “No detection by D” & F=— ===
DetectorD |~ 7T > A <77 In every time bin I “The particle went upward” | :
. . . > ) | |
timing of detections7 = (1, 3, 6) exactly one particle is | o | Det;ftor !
emitted : Thus tflwe whole situation is I I
. . - . [ tto =
Step 2: Apply a randomness extraction (e.g. random matrix) on t, and obtain random number r. : » SAtvalEnt 1o :Elr
The corresponding projection I l
i Detector D is perfect. | Detector | - . Detector ,
- N Initial Stfate pa(0) Loector D Isperect. \I D I operators E}, .EA are covariant I D'(= D) !
- e~ . lower hemisphere : I under the parity transf. P, I !
Legitimate Radiation source C ] PElP, = E .
(uls.er) A 5 U Correlated
Alice etector (
entangled)
N y 5
® Y 4
Measurement results ¢ .:-:- Partially  State p,r before measurement is parity invariant; P,04rP4 = pag- (Condition (a))
(roughly secure string) ‘v m\ * Eve’s state after Alice’s measurement is independent of the measurement result (T, !).
pi = tra(Edpag) = tra(PaEAPAPapaePa) = tra(Eipar) = pi
{ Randomness extractor f; ] * The joint state of Alice’s measurement result z; and of Eve takes the form
1 1
& mpletely Eaves Pz = 5 (DK + 19D, ® pi =5 (10)0] + 11X11);, ® pe
Final bits 7 unkhown dropper
(perfectly secure string) (Eve) [ z; is uniformly distributed, and unknown to Eve; hence a secure random number. ]
* As the same reasoning applies to all bits Z = (z4, ..., zy ), we have
. Bits unknown to Eve Bits known to Eve 5 app ; (@ 1:')
Huin (11E) = Hynin (ZIE) = N

Assumption: Parity (Space Inversion) Symmetry

The general (non-ideal) case can also be proved similarly.

Condition (a): ) . ] ] :
. . . , Radiation is al * Differences from the ideal situation: Actual Device Corresponding
* The security is guaranteed by using the parity symmetry of the device. adiation Is always Ideal Setting
. . . " parity invariant  The vacuum and multi-particle emission events.
* The parity symmetry can be realized by the following conditions. (e.g., a-decay) :
* Condition (a): The state of radiated particles is always parity invariant. * Detector D may not be perfect. Detector
Papap(£)Py = pag (). Source = None or both (instead of single one) | Dt
N S !
where H, =Deg. of freedom of radiated particless, =~ ~TT T TTEEZZmoEmroooooC of detectors DY, DT can go off. ource .

P, = Parity (space inversion) operator in H 4,

Detector D * Still, if one focuses on single detection events only,

= Deg. E . . |

Hp = Deg. of freedom of Eavesdropper the argument can be reduced to the ideal case. Detector D | thECtor

* Condition (b): Detector D is housed within a hemisphere around the source. S _ . | D*(=D)
= Hin (Z|E) > # single detection events |

* Condition (c): For probability more than 1 — §, the following inegs. hold:

Condition (b): =The theorem follows from condition(c) e 5

#detection events = ny,, #multi-particle emission events< 1y 1ti, :
Detector D is housed

#dark counts events < ng,k (Out of N time bins). within one hemisphere

around the source




