

LINEAR PROGRAMS FOR ENTANGLEMENT AND KEY DISTRIBUTION IN THE QUANTUM INTERNET

STEFAN BÄUML, KOJI AZUMA, GO KATO, DAVID ELKOUSS Communications Physics 3.1 (2020): 1-12, arXiv:1809.03120

• Quantum network consisting of channels, repeater stations and

 $\mathbf{NTT}(\mathbf{O})$

- $Q, \mathcal{P}_{network}^{worst case}$: Smallest rate that can be achieved by all user pairs concurrently.
- $\mathcal{P}_{network}^{worst case} \leq \max_{\{p_{uv}\}} \min_{V_1 \leftrightarrow V_2} \frac{\sum_{V_1 \leftrightarrow V_2} p_{uv} \mathcal{E}(\mathcal{N}^{uv})}{\# \text{ pairs divided by } V_1 \leftrightarrow V_2}$.
- Relax to concurrent multicommodity flow optimization LP^{a} . Gap of $\mathcal{O}(\log k)$.
- end users. Goal: distribution of entanglement by **adaptive** LOCC protocol. Possible target target states:
- Bell states $|\Phi^d\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d |ii\rangle.$
- Private states $\gamma^d = U^{\text{twist}} |\Phi^d\rangle \langle \Phi^d | \otimes \sigma U^{\text{twist}\dagger}$.
- GHZ states $|\Phi^{\text{GHZ},d}\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i\rangle \otimes \cdots \otimes |i\rangle.$
- Multipartite pdits $\gamma^d = U^{\text{twist}} |\Phi^{\text{GHZ},d}\rangle \langle \Phi^{\text{GHZ},d} | \otimes \sigma U^{\text{twist}\dagger}$.

BIPARTITE USER SCENARIOS

• Quantum and private network capacities:

$$\mathcal{Q}, \mathcal{P}_{\text{network}} = \lim_{\epsilon \to 0} \lim_{m \to \infty} \sup_{\Lambda} \left\{ \frac{\log d}{m} : \left\| \rho_{AB}^{(m)} - \theta_{target}^d \right\|_1 \le \epsilon \right\}.$$

- Lower bounds by concurrent aggregated repeater protocol.
- Efficiently computable bounds:

 $f_{Q^{\leftrightarrow}}^{\text{worst case}} \leq \mathcal{Q}_{\text{network}}^{\text{worst case}} \leq \mathcal{P}_{\text{network}}^{\text{worst case}} \leq \mathcal{O}(\log k) f_{\mathcal{E}}^{\text{worst case}}.$

^aAumann, Rabani 1998

TOTAL THROUGHPUT

- $\mathcal{Q}, \mathcal{P}_{network}^{total}$: Maximize sum of concurrent rates.
- $\mathcal{P}_{network}^{total} \leq \max_{\{p_{uv}\}} \min_{\{S\} \leftrightarrow \{T\}} \sum_{\{S\} \leftrightarrow \{T\}} p_{uv} E_{sq}(\mathcal{N}^{uv}).$
- Relax to max total flow optimization LP^{*a*}. Gap of $\mathcal{O}(\log k)$.

• Upper bound^{*a*}:

$$\mathcal{P}_{network} \le \max_{\{p_{uv}\}} \min_{S \leftrightarrow T} \sum_{uv \in E: \{uv\} \in S \leftrightarrow T} p_{uv} \mathcal{E}(\mathcal{N}^{uv})$$

for $\mathcal{E} = E_{sq}, E_{max}$ or E_R for teleportation stretchable channels

- Apply max-flow min-cut Theorem: Flow optimization in network with edge capacities $p_{uv} \mathcal{E}(\mathcal{N}^{uv})$.
- Lower bound on $\mathcal{Q}_{network}$: Aggregated repeater protocol^b: Distill Bell pairs across each edge with asymptotic rate $p_{uv}\mathcal{Q}^{\leftrightarrow}(\mathcal{N}^{uv})$ and swap along paths: Flow optimization in network with edge capacities $p_{uv}\mathcal{Q}^{\leftrightarrow}(\mathcal{N}^{uv})$.
- Efficiently computable bounds:

 $f_{Q^{\leftrightarrow}}^{a \to b} \leq \mathcal{Q}_{\text{network}} \leq \mathcal{P}_{\text{network}} \leq f_{\mathcal{E}}^{a \to b},$

with the **linear program**

- Lower bounds by concurrent aggregated repeater protocol.
- Efficiently computable bounds:

$$f_{Q^{\leftrightarrow}}^{\text{total}} \leq \mathcal{Q}_{\text{network}}^{\text{total}} \leq \mathcal{P}_{\text{network}}^{\text{total}} \leq \mathcal{O}(\log k) f_{E_{sq}}^{\text{total}}.$$

 a Garg et al. 1993

MULTIPARTITE USER SCENARIO

- $\mathcal{Q}, \mathcal{P}^S_{network}$: Maximum rate for distribution of GHZ or multipartite private states among set S of users.
- $\mathcal{P}_{network}^{S} \leq \max_{\{p_{uv}\}} \min_{S-cut S_i \leftrightarrow S_j} \sum_{S_i \leftrightarrow S_j} p_{uv} E_{sq}(\mathcal{N}^{uv}).$
- S-connectivity can be transformed into flow LP using max-flow

$$f_c^{a \to b} = \max \sum_{v: \{av\} \in E'} (f_{av} - f_{va})$$

$$\forall \{vw\} \in E': f_{wv} + f_{vw} \leq p_{wv}c_{wv} + p_{vw}c_{vw}$$

$$\forall w \in V: w \neq a, b, \sum_{v: \{vw\} \in E'} (f_{vw} - f_{wv}) = 0,$$

where the maximization is over edge flows $f_{vw} \ge 0$ and usage frequencies $0 \le p_e \le 1$, $\sum_e p_e = 1$.

^aAzuma et al. 2016, Pirandola 2016, Rigovacca et al. 2017. ^bAzuma, Kato 2016 min-cut Theorem.

- Lower bounds: Entanglement swapping \rightarrow 'GHZ-swapping', paths \rightarrow Steiner trees.
- Steiner tree packing problem NP hard, but can be relaxed to S-connectivity^{*a*}, which can be transformed into flow LP.
- Efficiently computable bounds:

$$\frac{1}{2}f_{Q^{\leftrightarrow}}^{S} \leq \mathcal{Q}_{\text{network}}^{S} \leq \mathcal{P}_{\text{network}}^{S} \leq f_{E_{sq}}^{S}.$$

 a Günlük 2007