

Almost Public Quantum Coins

Amit Behera, Or Sattath **Ben-Gurion University, Israel**

Coins Bills	Symmetric subspace	Rational Unforgeability
All money state are indistinguisha ble copies, and hence can't be tracked.	 Symmetric subspace over n registers - space of all states, invariant under any permutation of the registers. Symmetric subspace measurement – Projective measurement into the symmetric subspace. For two registers, it is the same as the SWAP test. 	 Rational unforgeaility - On expectation, one cannot pass more than n verifications starting with n coins. (No rational user would forge) Issues with the scheme 1. Standard forging still possible and only rational unforgeability holds. 2. Own money might get destroyed due to pubic verification. 3. Need a way to recover own money after failed verification. 4. Spending money received form others directly can lead to traceability attacks
Motivation: Comparison based Verification	Main protocol $\kappa :=$ poly-logarithmic function of	
User Transaction Untrusted party	λ . $ \mathfrak{m}\rangle := a$ private coin. $ \diamondsuit\rangle := a$ public coin. $Verif y_{ \diamondsuit} :=$ Public verification.	

- 1. Works for coins not for bills.
- 2. Specific security features of the money not required.

How to compare quantum states?

 \rightarrow

Verif y_{sk} := Private verification.

- $Keygen(1^{\lambda})$ Run private scheme's Keygen, to generate sk.
- *Mint(sk)* Use the private scheme's mint κ times to prepare $| \langle \rangle = | m \rangle^{\otimes \kappa}$.

• $Verify_{|\langle \rangle}(|\phi \rangle)$ - Symmetric subspace measurement on 2κ registers of | (ψ) and | m), and accept on success.

lead to traceability attacks.

own

Restriction: User manual

Security guarantees

- The money scheme is (nonadaptive) rationally unforgeable.
- Under the restrictions in

the user manual, it is secure against sabotage attacks (rationally), and also traceability attacks.

Read the Full Paper at: https://arxiv.org/pdf/2002.12438.pdf