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Discrete-modulated continuous-variable (CV) quantum key distribution (QKD) can be
a cost-effective solution to distributing secret keys in the quantum-secured networks
since it uses a setup nearly identical to modern telecommunication equipment.
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Asymptotic key rate  (reverse reconciliation): 
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where Alice prepares | ⟩𝜶𝒙 with a priori probability 𝒑𝒙, and { ⟩𝒙 is an orthonormal basis for the register A.

SECURITY PROOF METHOD

where ℇ"!→$ is a completely positive trace preserving (CPTP)  map. 

where the cost of error correction per signal is  𝐻 𝐙 − 𝛽 𝐼(𝐗; 𝐙) .

Devetak-Winter formula [3]
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OUR CONTRIBUTION

Nonlinear semidefinite program: 

minimize      𝑫(𝓖 𝝆𝑨𝑩 ||𝓩(𝓖(𝝆𝑨𝑩)))
subject to: 

𝑻𝒓[𝝆𝑨𝑩 (| ⟩𝒙 ⟨𝒙|𝑨⨂F𝑶𝒊)] = 𝒑𝒙 𝑶𝒊 𝒙
𝐓𝐫𝑩[𝝆𝑨𝑩]=∑𝒊,𝒋0𝟎𝟑 𝒑𝒊𝒑𝒋 𝜶𝒋 𝜶𝒊 | ⟩𝒊 ⟨𝒋|𝑨
𝝆𝑨𝑩 ≥ 𝟎, 𝐓𝐫[𝝆𝑨𝑩]= 𝟏

for 𝒙 ∈ 𝟎, 𝟏, 𝟐, 𝟑 and some choices of F𝑶𝒊

See Refs. [1, 2] for details.

𝒵 𝜎 = ∑"#$% 𝑍" 𝜎 𝑍" , where 𝑍" = ⟩𝑗 ⟨𝑗 & ⨂1'( for j ∈ {0, 1, 2, 3}.
𝒢 𝜎 = 𝐾 𝜎 𝐾), where 𝐾 is defined as 𝐾 = ∑*#$% | ⟩𝑧 &⨂1'⨂( 𝑅*)(
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Fig. 7 of Ref. [1]. Key rate vs. transmission distance for different values of excess 
noise, from top to bottom, 𝜉 = 0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04.
Error correction efficiency 𝛽 = 95%. Coherent state amplitude 𝛼 is optimized via a 
coarse-grained search. (𝜂!=1, 𝜈"#=0)

Fig. 10 (b) of Ref. [1]. Key rate vs. transmission distance for postselection. The
relevant postselection parameter ∆$ is optimized via a coarse-grained search in the
interval [0.4, 0.7] where the optimal value falls. 𝛼 = 0.6, 𝜉 = 0.04. (𝜂!=1, 𝜈"#=0)
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PROTOCOL DESCRIPTION
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Each homodyne detector has two imperfections: 
detector efficiency: 𝜂);  electronic noise: 𝜈).

𝜌!" #𝑛# : thermal state with mean photon #𝑛# = $!
%('()!)

POVM: 
a (scaled) projection onto displaced squeezed thermal states 

POVM: 
a (scaled) projection onto coherent states 

𝑃(𝑦|𝑥) = Tr(𝜌!𝑀"
# ) 1𝑓 𝑦, 𝑦∗ 𝑃 𝑦 𝑥 𝑑%𝑦

where 𝑓 𝑦, 𝑦∗ is a real-valued function 
such that the integral converges.

Data processing General observables:

5𝑂 = 1𝑓 𝑦, 𝑦∗ 𝑀"
#𝑑%𝑦

POVM  {𝑀!
"}

KEY RATE OPTIMIZATION PROBLEM

Constraint formulation: 

A phase-invariant Gaussian channel with
• transmittance 𝜼𝒕
• excess noise 𝝃 referred to input of the channel

p

q

• Asymptotic security proofs against collective attacks
• Both untrusted and trusted detector noise scenarios
• Allowing postselection of data
• Can handle different variants of the protocol: 

• homodyne/ heterodyne
• general discrete modulation schemes (not restricted to four)

Channel 
simulation

Two homodyne detectors have the same imperfections: 
detector efficiency: 𝜂):= 𝜂*= 𝜂+;  

electronic noise: 𝜈,-:= 𝜈* =𝜈+. 

SIMULATION RESULTS

Assume 𝜌"$ = (1"⨂⨅.)𝜌"$(1"⨂⨅.)   for a sufficiently large integer N.
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PHOTON-NUMBER CUTOFF ASSUMPTION

Intuition of the cutoff assumption:
When mean photon number n << N, essential information is captured in ≤ N subspace 

Ideal detector scenario Trusted detector scenario

Parameters: 
The excess noise:  ξ = 0.01 
Detector efficiency: 𝜂$ = 0.719
Electronic noise: 𝜈%& = 0.01
Error correction efficiency 𝛽 = 95%

Comparison
between 

trusted and 
untrusted

detector noise 
scenarios

Two scenarios with the same observed statistics Coherent state amplitude 𝛼 is optimized.

Fig. 4 of Ref. [2]. Key rate vs. transmission distance for different detector 
imperfections. The excess noise is ξ = 0.01. Error correction efficiency 𝛽 = 95%. 
Coherent state amplitude 𝛼 is optimized via a coarse-grained search. 

Fig. 3 of Ref. [2]

Fig. 8 of Ref. [2]. Key rate vs. transmission distance for postselection. Detector 
parameters are 𝜂!=0.552, 𝜈"#=0.015. The relevant postselection parameter ∆$ is 
optimized via a coarse-grained search in the interval [0.45, 0.7]. 𝛼 = 0.75, 𝜉 = 0.01.
Error correction efficiency 𝛽 = 95%. 
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?Examples of 3𝑶𝒊:

Quadrature operators 5𝒒 and 5𝒑
Photon-number operator 5𝒏

Examples of 𝑓 𝑦, 𝑦∗ :
Re(𝑦), Im(𝑦), 𝑦𝑦∗ − 1

Discovery Grants Program: Grant No. 341495
Collaborative Research and Development Program, Grant No. CRDP J 522308-17


