Finite Block Length Analysis on Quantum Coherence **Distillation and Incoherent Randomness Extraction** [2002.12004]

QCrypt 2020, Amsterdam

[4]. Second-order analysis

For example:

 $C_{d,\text{MIO}}^{(1),\varepsilon}(\rho^{\otimes n}) \stackrel{?}{=} nD(\rho \| \Delta(\rho)) + \sqrt{nV(\rho \| \Delta(\rho))} \Phi^{-1}(\varepsilon) + O(\log n)$

Why do we study the second-order asymptotics:

- 1. It gives a useful approximation to the averaged distillable coherence for given *finite copies* of resource states.
- Its determines the *rate of convergence* of the averaged distillable coherence to its first order coefficient (in the same manner of Central Limit Theorem v.s. Berry-Esseen Theorem).
- It implies the *strong converse property*, an information-theoretic property that rules out a possible tradeoff between the transformation error and the distillable coherence of a protocol.

Difficulty:

one-shot bounds with *matching* epsilon error dependence

[8]. Main result 2: second-order expansions

For any quantum state ρ_A and error tolerance $\varepsilon \in (0,1)$ and free operation class $\mathcal{O} \in \{MIO, DIO, IO, DIIO\}$, it holds $C^{\varepsilon}_{d,\mathcal{O}}(\rho^{\otimes n}) = \ell^{\varepsilon}_{\mathcal{O}}(\rho^{\otimes n}) = nD(\rho \| \Delta(\rho)) + \sqrt{nV(\rho \| \Delta(\rho))} \, \Phi^{-1}(\varepsilon^2) + O(\log n).$

Remarks:

- randomness extraction in the large block length regime.
- 1. This is the *first* second-order analysis in coherence theory. 2. MIO/DIO/IO/DIIO have *equivalent power* for coherence distillation and
- 3. As coherence is generically undistillable under SIO/PIO [Lami et al.-2019, Lami-2019], our results have *completed* the second order analysis on distillable coherence under all major classes of free operations.
- 4. It gives an alternative proof of the strong converse property of coherence distillation [Zhao et al.-2019] and randomness extraction.

Information variance cumulative distribution function of a standard normal random variable

- Quantum state redistribution: [Anshu-Jain-Streltsov-2018]

[7]. Proof ideas

Distillation protocol -> Randomness extraction protocol

Randomness extraction protocol -> **Distillation protocol**

For any incoherent randomness extraction protocol (id, Δ, f) such that

Then there exists Λ in DIIO such that $P(\Gamma_{A \to L}(\rho_A), \Psi_L) \leq \varepsilon_A$

[10]. Open problems

- . (Coherence distillation) Strong converse exponents (the exact rate of error measure converges to one when the achievable rate is over the optimal rate) **Error exponents** (the exact rate of error measure decays to zero when the achievable rate is below the optimal rate)?
- 2. (Coherence cost) What are the second order asymptotics of **coherence cost**?
- 3. (Incoherent randomness extraction) Is any **advantage** of performing incoherent operations in the **third or** higher order terms?

ous	works						
	Second	order	· analysis ?			asymptotic	
	large	e bloci	klength			∞	▶ n
rations	S Distillable coherence $ \begin{array}{c} C_r \\ C_r \\ C_r \\ C_r \\ Q \\ Q \end{array} $		Coherence cost C_r C_r C_f C_f C_f C_f	۔ [Winter-Yang-2016] [Regula-Fang-Wang-Adesso-2018 [Chitambar-2018] [Lami-2019]]	
dist forr	$\begin{array}{c c} & MIO\\ \hline \\ \text{illation} & \widetilde{C}_{H}^{\varepsilon}\\ \text{mation} & C_{\mathrm{ma}}^{\varepsilon}\\ \hline \\ & [Regula-F]\\ \hline \\ & [Zhao-Liu-Yu] \end{array}$	[25] _x [24] ang-W an-Ch	DIO $\widetilde{C}_{H}^{\varepsilon}$ [25] $C_{\Delta,\max}^{\varepsilon}$ /ang-Adesso- itambar-Wint	IC [24] C -2018] ter-2018]) $\mathcal{E}_{\min}^{\varepsilon'}$ [*] $\mathcal{E}_{0}^{\varepsilon}$ [24]	SIO Thm. 10 [*] C ^ε ₀ [24]	

For any free operation Λ such that $P(\Lambda(\rho_A), \Psi_C) \leq \varepsilon$

Then $(\Lambda, \Delta, \mathrm{id})$ is an incoherent randomness extraction protocol such that $d_{sec}(\rho[\Lambda, \Delta, \mathrm{id}]_{CER} | ER) \le \varepsilon$

 $d_{sec}(\rho[\mathrm{id}, \Delta, f]_{LR}|R) \leq \varepsilon$

