On Key Generation Schemes with QKD for applications

PRESENTER: **Andrey Zhilyaev** Andrey.Zhilyaev@infotecs.ru

Problems:

- QKD protocol consumes keys to generate quantum keys (QK)
- Some systems further use quantum keys to generate working keys (K)
- What is the best way to use one keys to generate another keys and improve the key stream properties?

Our Proposal:

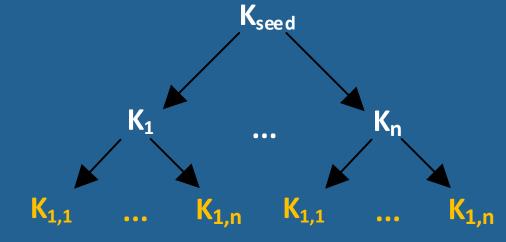
- The hybridization of quantum keys and classical preshared keys to construct the optimal key generation and distribution scheme (KGDS)
- Use the best properties of both classic and quantum key generation schemes
- Computation secure MAC can be used for QKD authentication for low speed QKD devices

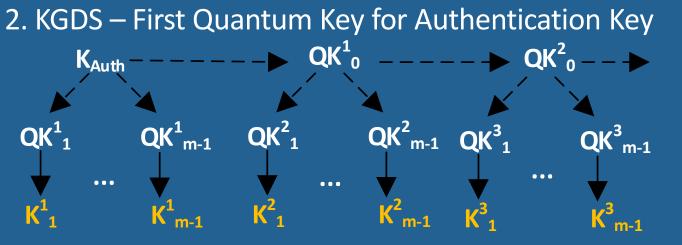
Approach to analyze KGDS:

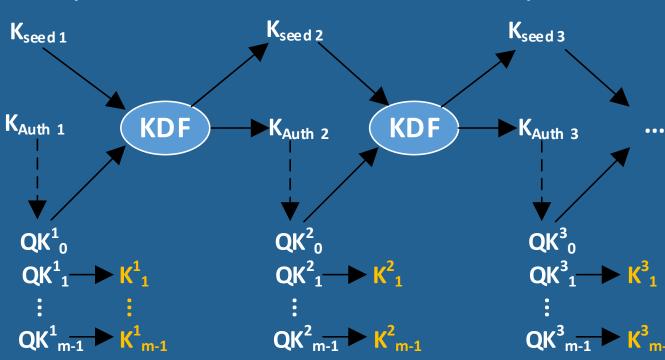
- Cryptographic properties
- Impersonation attack on Authentication key
- Known-text attack on Authentication key
- Known text attack on Working key
- An influence of an untrusted courier
- Consequences of the attacks

Operational properties

- Initialization problems
- Key storage problems
- Key synchronization problems


Hybrid KGDS Advantages:


- Perfect forward secrecy can be achieved
- Hybrid Schemes more resistant against considered attacks
- An adversary have limited time to perform an attack
- Partial compromise of generated keys
- An untrusted courier have significantly complicated attack conditions


Wherein

- MAC length must be at least equal to the length of the key
- Order of QK usage is important
- Loss of the key synchronization may lead to irreversible problems

3. Hybrid KGDS – Classic + Quantum Key Scheme

Key Generation and Distribution Schemes

Perfect Forward Secrecy Property

	, , ,
KGDS	Perfect forward secrecy
Without QK	No
QK for KAuth	Yes
Hybrid KQDS	Yes

Key Compromise Consequences

, , ,		
KGDS	Key Compromise	
Without	Compromise of <u>one</u> derived key	
QK	compromise <u>all</u> keys	
QK for	 Compromise of <u>QK</u> used for K_{Auth} 	
KAuth	compromises <u>all QK</u> generated with	
	authentication on this K _{Auth}	
	 Compromise of <u>K_{Auth} before</u> first 	
	QKD session on this K _{Auth}	
	compromises <u>all</u> keys	
	• Compromise <u>of K_{Auth} after</u> first QKD	
	session on this K _{Auth} compromises	
	all <u>QK generated</u> with	
	authentication <u>on this K_{Auth}</u>	
Hybrid	• Compromise of K _{Auth} compromises	
KGDS	all QK generated with	
	authentication on this K _{Auth}	
	 Compromise of K_{seed} and QK₀ (or 	
	K _{Auth}) compromises all keys except	
	previous generated QK	

Best Attack Probabilities

KGDS	MAC length	MAC length
	128 bit	256 bit
Without QK	2^{-199}	2^{-199}
QK for K _{Auth}	2^{-125}	2^{-215}
Hybrid	2^{-125}	2^{-215}
Scheme		

Best Attack Consequences

KGDS	Best attack consequences	
Without QK	All keys are compromised	
QK for K _{Auth}	All further keys are	
	compromised. Already generated	
	keys stay secret	
Hybrid	Only <u>keys generated with</u>	
Scheme	authentication on <u>recovered K_{Auth}</u>	

Mikhail Borodin, Alexey Urivskiy and Andrey Zhilyaev

