Gabriel Protocol
 \{ ANOMAN Don, ARNAULT François, NALDI Simone \}

SUMMARY

- QUANTUM RANDOM NUMBER GENERATOR based on violation of a free version of CHSH-3 expression, using Qutrits.
- Maximal quantum violation based security and Maximal entropy guaranteed under self-testing hypothesis

Original CHSH-3

Requirement

- 2 parties (A and B) and 2 measurements per party
- Measurements A_{i} commute with B_{j}; their dimension is $\mathrm{d}=3$

Classical world inequality [1, 2, 3]
$I_{3}=P\left(A_{1}=B_{1}\right)+P\left(A_{2}=\omega^{2} B_{1}\right)+P\left(A_{2}=B_{2}\right)+P\left(A_{1}=B_{2}\right)$
$-P\left(A_{1}=\omega^{2} B_{1}\right)-P\left(A_{2}=B_{1}\right)-P\left(A_{2}=\omega^{2} B_{2}\right)-P\left(A_{1}=\omega B_{2}\right.$ ≤ 2
(1)

Specification

- Not defined when observables A_{i} do not commute with B_{j}
- Quantum upper bound [4]: $1+\sqrt{11 / 3} \approx 2.9149$
- Algebraic upper bound: 4

Free CHSH-3

Requirement

- 4 measurements with no constraints of parties
- Measurements do not necessarily commute; their dimension $d \geq 3$
Classical world inequality: decomposition of (1) using projectors
$\langle\phi| X_{1,1} X_{3,1}+X_{1,1} X_{4,1}-X_{1,1} X_{3, \omega}-X_{1,1} X_{4, \omega^{2}}+X_{1, \omega} X_{3, \omega}$
$+X_{1, \omega} X_{4, \omega}-X_{1, \omega} X_{3, \omega^{2}}-X_{1, \omega} X_{4,1}+X_{1, \omega^{2}} X_{3, \omega^{2}}+X_{1, \omega^{2}} X_{4, \omega^{2}}$
$-X_{1, \omega^{2}} X_{3,1}-X_{1, \omega^{2}} X_{4, \omega}+X_{2,1} X_{3, \omega}+X_{2,1} X_{4,1}-X_{2,1} X_{3,1}$
$-X_{2,1} X_{4, \omega}+X_{2, \omega} X_{4, \omega}+X_{2, \omega} X_{3, \omega^{2}}-X_{2, \omega} X_{3, \omega}-X_{2, \omega} X_{4, \omega^{2}}$
$+X_{2, \omega^{2}} X_{3,1}+X_{2, \omega^{2}} X_{4, \omega^{2}}-X_{2, \omega^{2}} X_{3, \omega^{2}}-X_{2, \omega^{2}} X_{4,1}|\phi\rangle \leq 2$
(2)

Specification:

- Defined for non commuting observables.
- Quantum upper bound (using SDP) : 4
- Algebraic upper bound : 24

Optimal Quantum state and measurement for Free CHSH-3

Optimal state and projectors obtained by SDP in the spirit of [5] :
4 operators of dimension $d=3$ acting on one party prepared in the optimal state $\left|\phi^{*}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$;
Projectors' vectors $\left|x_{1,1}\right\rangle,\left|x_{1, \omega}\right\rangle,\left|x_{1, \omega^{2}}\right\rangle,\left|x_{2,1}\right\rangle, \ldots,\left|x_{4, \omega^{2}}\right\rangle$ are given by the column of the matrix $\frac{\sqrt{3}}{9}\left[\begin{array}{lllllrrrrrrr}3 & 0 & 0 & 0 & 3 & 0 & 2 & -1 & 2 & 2 & 2 & -1 \\ 0 & 3 & 0 & 0 & 0 & 3 & 2 & 2 & -1 & -1 & 2 & 2 \\ 0 & 0 & 3 & 3 & 0 & 0 & -1 & 2 & 2 & 2 & -1 & 2\end{array}\right]$
Observables: $X_{i}^{*}=1 \cdot\left|x_{i, 1}\right\rangle\left\langle x_{i, 1}\right|+\omega \cdot\left|x_{i, \omega}\right\rangle\left\langle x_{i, \omega}\right|+\omega^{2} \cdot\left|x_{i, \omega^{2}}\right\rangle\left\langle x_{i, \omega^{2}}\right|$.

$$
X_{1}^{*}=Z=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right] ; \quad X_{2}^{*}=\left[\begin{array}{rrr}
\omega & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & 1
\end{array}\right] ; \quad X_{3}^{*}=\frac{1}{3}\left[\begin{array}{rrr}
-\omega & 2 & 2 \omega^{2} \\
2 & -\omega^{2} & 2 \omega \\
2 \omega^{2} & 2 \omega & -1
\end{array}\right] ; \quad X_{4}^{*}=\frac{1}{3}\left[\begin{array}{rrr}
-\omega^{2} & 2 \omega & 2 \\
2 \omega & -1 & 2 \omega^{2} \\
2 & 2 \omega^{2} & -\omega
\end{array}\right]
$$

Remark : X_{1}^{*} commute with X_{2}^{*}. The same for X_{3}^{*} and X_{4}^{*}. Measurement of $\left|\phi^{*}\right\rangle$ by X_{i}^{*} gives 1 or ω or ω^{2} with probability $1 / 3$

Protocol Execution

Repeat several times the next steps

1) Prepare a qutrit in the state $\left|\phi^{*}\right\rangle$. Select randomly a couple of measurement $\left(X_{i}^{*}, X_{j}^{*}\right) ; i, j \in\{1, \ldots, 4\}$. (use public randomness source as that of the NIST)
2) If $i, j \in\{1,2\}$ or $i, j \in\{3,4\}$ (the chosen measurements commute) then measure the state $\left|\phi^{*}\right\rangle$ with X_{i}^{*} and return the random trit $\omega^{k}, k \in 0,1,2$. Measurement of $\left|\phi^{*}\right\rangle$ by X_{i}^{*} gives 1 or ω or ω^{2} with probability $1 / 3$ thus an min-entropy of 1 trit
$2^{\prime \prime}$) Else, measure the state $\left|\phi^{*}\right\rangle$ using X_{j}^{*}. Then collect the obtained state $\left|x_{j, \omega^{k}}\right\rangle$ and measure it using X_{i}^{*}. The obtained state is $\mid x_{\left.i, \omega^{\ell}\right\rangle}$. Then return the tuple (" $\left.\left|x_{\left.j, \omega^{k}\right\rangle^{\prime}}, "\right| x_{i, \omega^{\ell}}\right\rangle^{\prime \prime}$) for the evaluation of Bell quantity (2)

SECURITY AND SELF TESTING ARGUMENTS

One evaluate Free CHSH-3 expectation using outcomes of step 2^{\prime}. If this expectation is not equal to quantum bound 4 , the protocol is not valid.
In self-testing hypothesis, non malicious but error prone device, we guaranteed that, obtaining the maximal Bell value 4 is equivalent to the fact of obtaining maximal min entropy

References

[1] D. Kaszlikowski, L. Kwek, J.-L. Chen, M. Żukowski, and C. Oh. Clauser-Horne inequality for three-state systems. Phys. Rev. A, 65:032118, Feb 2002.
[2] A. Acín, N. Durt, T. Gisin, and J. Latorre. Quantum nonlocality in two three-level systems. Phys. Rev. A, 65, 052002.
[3] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu. Bell Inequalities for Arbitrarily High-Dimensional Systems. Phys. Rev. Lett., 88:040404, Jan 2002.
[4] L.-B. Fu, J.-L. Chen, and X.-G. Zhao. Maximal violation of Clauser-Horne-Shimony-Holt inequality for two qutrits. Physical Review A, 68, 092002.
[5] S. Pironio, M. Navascués, and A. Acín. Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. on Optimization, 20(5):2157-2180,

