THE BITCOIN BACKBONE PROTOCOL AGAINST QUANTUM ADVERSARIES Alexandru Cojocaru, Juan Garay, Aggelos Kiayias, Fang Song, Petros Wallden

Post-Quantum Backbone

- All honest parties and adversaries are classical;
- t adversaries, n t honest parties honest majority assumption;
- \bullet In a single round, in order to break a PoW, each party (honest or adversary) has q queries to H
- H is modelled as a Classical Random Oracle;
- **PoW** Party convinces others he invested effort for solving a task: Find witness y such that H(x, y) < D, where x - hash of the last block.

• Adversary is quantum;

- He is allowed to query H in superposition:
 - $|y_1
 angle + \cdots |y_n
 angle \otimes |0
 angle \stackrel{O_H}{\to} |y_1
 angle |H(y_1)
 angle + \cdots + |y_n
 angle |H(y_n)
 angle$

 \bullet We model the adversary as a single quantum adversary with N total queries, joint computational effort of the parties under his control

Our Results

Security against Quantum Adversaries holds by bounding: *Quantum adversarial hashing power* relative to honest classical hashing power 1. Quantum queries so that each quantum query is worth $O(p^{-1/2})$ classical ones 2. Wait time for safe settlement is expanded by a factor of $O(p^{-1/6})$

Bag-of-PoWs

Simplified problem asking for maximum cardinality of "independent" PoWs given fixed number N of queries and success probability δ

PROBLEM Π'_G : BAG-OF-POWS Given: N, δ and h_0, \ldots, h_{N-1} as oracles, where each $h_i : X \times Y \to X$ is independently sampled. Goal: Using N total number of queries find a set of pairs $\{(x_{i_1}, y_{i_1})_1, \ldots, ((x_{i_k}, y_{i_k})_k)\}$ so that $h_{i_l}(x_{i_l}, y_{i_l}) \leq D$, for all $l \in \{1, \ldots, k\}$, such that the cardinality $k \leq N$ of the set of pairs is the maximum that can be achieved with success probability at least δ . Note that in the set, each pair should correspond to different oracle.

where p = probability of success of a single classical query

Underlying Abstract Problem

- Quantum Adversary tries to produce a chain longer than honest chain;
- Translates to a search problem where output is a chain of hashes (output of one hash is fed as input to next hash).

PROBLEM Π_G : CHAIN-OF-POWS **Given**: $N, x_0 \in X, \delta$ and h_0, \ldots, h_{N-1} as (quantum) random oracles, where each $h_i : X \times Y \to X$ is independently sampled. **Goal**: Using N total queries find a sequence y_0, \ldots, y_{k-1} such that $x_{i+1} := h_i(x_i, y_i)$ and $x_{i+1} \leq D \forall i \in \{0, \cdots, k-1\}$ such that the length of the sequence $k \leq N$ is the maximum that can be achieved with success probability at least δ .

Sequential Measurements Strategy (SMS) for Bag-of-PoWs Different blocks are neither sequential nor chained (they are independent)

Adversary that given N queries solves Bag-of-PoWs in a sequential way (following an order). Number of queries K_i spent for each oracle h_i satisfy:

$1. \sum_{i=1}^{N} K_i = N$

2. Choice of K_i depends only on:

(a) Number of left queries N − (K₁ + · · · + K_{i-1})
(b) Previous searches outcomes [w₁, · · · , w_{i-1}] - w_i indicates if a PoW was solved using *i*-th oracle

• SMS are **optimal** for Bag-of-PoWs

• For the most general SMS adversaries, variables are dependent:

• \Rightarrow To bound number of adversarial PoWs using the maximal expectation value we need to use an **alternative concentration theorem**.

Max sequence of length k Max sequence of length k' $k \le k'$ Full paper: https://eprint.iacr.org/2019/1150