Stronger models

- General composability
- Sequential composability
- Game-based security

Why is it useful?

Classical-client Remote State Preparation protocols could be used to remove quantum channels in a wide range of protocols, including:

- Universal Blind Quantum Computing (UBQC, pictured on the right)
- verifiable quantum computing
- multi-party computing

However, the security of the combined protocol needs to be proven separately for each protocol.

Intuitive definition of Remote State Preparation

Intuitively, a remote state preparation protocol is a 2-party protocol that can be used to prepare a (unknown) quantum state on the server side, such that the classical description of this state is known to the client. While this is easy to achieve in the presence of a quantum channel between the parties, there are also candidates when the client is purely classical.

Construction of Crypto

Constructive Cryptography (CC) is a model of security that provides the strongest guarantee of general (sequential + parallel) composability. To prove that the protocol (A, B) securely realizes a resource S from a classical channel C, one needs to find a simulator σ such that the following hold for a computationally bounded distinguisher:

\[
\begin{align*}
\Pr[A \rightarrow C \rightarrow B] & \approx \Pr[A \rightarrow S \rightarrow B] \\
\Pr[A \rightarrow C \rightarrow B] & \approx \Pr[A \rightarrow \sigma \rightarrow B]
\end{align*}
\]

Formalization of RSP

In order to have a more generic result, we introduce two converters A and Q. Then, we say that a resource S is a remote state preparation (RSP) within ε with respect to A and Q if S can be used (with the help of A and Q) to prepare (during an honest run) a quantum state ρ and a classical description μ:

\[
\begin{align*}
\Pr[A \rightarrow S \rightarrow B | \rho] & \approx \Pr[A \rightarrow \mu | \rho]
\end{align*}
\]

such that on average ρ is “close” to ρ':

\[
\mathbb{E}_{\rho \sim \mathcal{D}_{\text{RSP}}} \Tr[\rho \rho'] \geq 1 - \varepsilon
\]

For example, the trivial resource that turns θ into $|+\rangle$ is a RSP resource within 0:

\[
\begin{align*}
\theta & \rightarrow |+\rangle \\
\theta & \rightarrow |+\rangle
\end{align*}
\]

Result 1

Theorem: RSP is describable

If an ideal resource S is both RSP within ε_1 with respect to some A and Q and classically-realizable within ε_2 (including against only polynomially bounded distinguishers), then it is describable within $\varepsilon_1 + \varepsilon_2$ with respect to A.

Corollary: No-go RSP

"Useful" RSP resources are impossible.

Proof: classically simulate the honest server.

Result 2

Since our first result shows that the RSP resources classically-realizable of interest are impossible, it means that everytime we replace a quantum channel with a classical protocol, we need to prove the security of the new combined protocol. One important protocol is the UBQC protocol, but...

Result 3

We proved that classical-client UBQC cannot be shown secure in CC. Therefore, to prove the security of classical-client UBQC, we need to target weaker models of security:

Theorem: game-based $\text{QFactory} + \text{UBQC}$

The protocol consisting of UBQC with the quantum communication replaced by the QFactory protocol of [CCKW19] is secure in a game-based setting, i.e. the server cannot learn any information about the chosen circuit.

Proof: sequence of games reducing to the semantic security of the cryptographic primitive.