Entanglement Generation in a Quantum Network at Distance-independent Rates

Center for
Quantum Networks

Ashlesha Patil ${ }^{1}$, Mihir Pant ${ }^{2}$, Dirk Englund ${ }^{2}$, Don Towsley ${ }^{3}$ and Saikat Guha ${ }^{1}$
${ }^{1}$ James C. Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, Arizona 85721, USA. ${ }^{2}$ Massachusetts Institute of Technology, 32 Vassar Street, Cambridge MA 02139, USA.
${ }^{3}$ College of Information and Computer Sciences, University of Massachusetts, Amherst, MA 01002, USA.

In a nutshell

We develop a new QKD protocol that allows a pair of users to sift a secret key starting from shared variable length Greenberger-Horne-Zeilinger (GHZ) states.
An entanglement generation scheme that achieves rates that are independent of the distance between the two users, despite lossy (hence probabilistic) link-level entanglement generation, and probabilistic success of the projective measurements at repeaters.
The key new insight in our protocol is to allow a repeater node to use n-qubit GHZ projective measurements that can fuse n successful entangled links.
The distance-independent rate is not possible to attain with any quantum networking protocol using Bell measurements and multiplexing alone.

Entanglement Routing using Bell-State Measurements

p - link generation probability
q - Bell state measurement success probability
Higher rate compared to linear repeater chain along shortest path, even using local link state knowledge [2]
Entanglement rate decays exponentially even with global link state knowledge when $q<1$ [2].

Distance-Independent Entanglement Generation Rate

[^0]
[^0]: References: [1] Bennet, C. H., Brassard, G., and Mermin, N., D., Phys. Rev. Lett. 68, 1992, pp. 557-559
 [2] Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D. and Guha, S., npj Quantum Information, 5(1), 2019
 [3] M. Bhaskar, et al., Nature 580 (7801), 60-64(2020)

