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In a nutshell

Distance-Independent Entanglement Generation Rate

* We develop a new QKD protocol that allows a pair of users to sift a secret key starting from Measurements used - _ _ . L _
shared variable length Greenberger-Horne-Zeilinger (GHZ) states. 7-GHZ stat () rfk-fuszjon P Jog?;[ IE)rOJeclzstlvlsGr:;astu:em?fnt on the GHZ basis
* An entanglement generation scheme that achieves rates that are independent of the distance Success o PEHONMEd on K-quiblis from Be SHIES: .
between the two users, despite lossy (hence probabilistic) link-level entanglement generation, and stusion | O ° successful — creates a GHZ state among all the unmeasured qubits
probabilistic success of the projective measurements at repeaters. }ﬁ
« The key new insight in our protocol is to allow a repeater node to use n-qubit GHZ projective —_— IO/T\OI oo fails — due to hardware constraints, we model it by performing X-
—>

measurements that can fuse n successful entangled links.
 The distance-independent rate is not possible to attain with any quantum networking protocol ><X
o

basis measurements on the k-qubits.

o

using Bell measurements and multiplexing alone.

— ()
; i (i) X-basis measurement removes the qubit from the GHZ state

X-basis measurement

Nofte that these are not cluster states.

The n-GHZ protocol - (i) Link (shared Bell pair between neighboring repeaters) generation
attempts at each repeater, i.i.d., with success probability p.

The QKD Protocol
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(i) The repeater nodes have only local link-state knowledge.

« Extension of the BBM'92 protocol [1].

« Step 1: Alice and Bob start with multiple m +
d b’ | [ > 2 qubit GHZ states such that Alice and
v

Alice Bob have m- and [ qubits of the GHZ state.
ﬂ Eve

Many copies of GHZ states
n Classicail channel

(ili) k-fusion attempts at each repeater except Alice and Bob, i.i.d., with
success probability g

- k = min(n, no. of successful links at the repeater)

Here, m and / can vary across the collection
of shared GHZ states Alice and Bob possess.

- iIf k = 1, X-basis measurement

- The fusions and the X-basis measurements occur simultaneously.

| Alice | Bob * Step 2: Each user Measures a,” their qubits Implementing k-fusion, for k23 is in principle not much harder than 2-
Basis| Measure | Key | Basis |Measurem| Key of the BhZ state using (their) indepencently (b) fusions (Bell measurement) in qubit memories, e.g., color centers in
ment ent and randomly-chosen measurement basis. OO O O O diamond [3] d €9
outcome outcome ° Step 3: If both of them used @ Aj.i.ce _ | .

+/- 1010 0 +/- 0 0 a. the (0/1-basis), they get bit string of either (Iv) GHZ states shared between Alice and Bob

0/1 0 0 0/1 0 0 all O's or all 1's. In this case, that bit becomes Shared entanglement is generated if there exists at least one path
+/- | 1101 - 0/1 11 - the key. between Alice and Bob in the (network) graph of qubits generated
- 100 1 - 010 1 b. the (+/- - basis), the key is the parity of after fusions. (Fig. 1(a)) — Site-bond Percolation!

8; 1 1111111 1 6’//1 1011 1 1 thgir respective measurement outcome bit  Site occupation probability = g, bond occupation probability = p

011 | 00 ~ |+ | 110 | - strings.

Fig. 1 — 3-GHZ protocol on square-grid network
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) . . : i 0 0.2 0.4 0.6 0.8 1 Manhattan Distance
S, @ @ﬂ along shortest path, even using local link state | SiReREces P e Repeater success probablty () |
g‘; o Bob knowledge [2] Fig. 2 — (a) shows that after p crosses a threshold p,.. , as dictated by the site-bond region, the rate goes from near zero
~ 5- G % @ linéar repeater chain 9 _ (regime where rate falls exponentially) to 1. (b) (p,q) region where our protocol supports distance-independent entangle
STESPISE ‘ Eptangleme-nt rate decays exponentially even ment rate (c) Rate as a function of distance for three different values of (p.q) marked in (b).
"3;_Aﬁcﬁe————v————;—‘“'m with global link state knowledge when q <1 [2]. When (p, g) lies in the super-critical regime of the relevant percolation problem, the end-to-
100 v end entanglement rate becomes independent of the distance between Alice and Bob.
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