
Summary of technical details:

• Lower bound with Markov’s inequality + cross-click probability

• Infinite decoy + Eve’s QND photon counting + signal tagging

➔ Decomposition of privacy amplification (PA) term in key rate formula

• Each PA term independent of signal intensity ➔ easy to optimise over
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Introduction

• Phase-encoded BB84 experiments have unbalanced signal amplitudes

due to loss in phase modulators.

• Ref. [1, 2] turn the security proof into a standard BB84 proof using decoy

states, signal tagging, and the qubit squashing model [3].

• The qubit approach pessimistically assumes that Eve has full access to

the information carried by multiphoton signals.

➔ underestimate the secure key rate of this protocol.

• Here, our different proof technique achieves higher key rates.

Differences between our approach and Refs. [1, 2]’s:

• We apply the numerical analysis formulated in [4] to obtain reliable lower

bounds on the key rates.

• Source side: tag the photon number of the signals and extend our analysis

to a higher tagged threshold photon number.

• Receiver side: use flag-state squashing model [5] (see Yanbao Zhang’s talk)

to avoid extra qubit errors from the qubit squashing model.

- Need lower bound for ➔ preserve entanglement

➔ preserve some parts of the multi-photon generated private information
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Fig. 1: Setup for the phase-encoded BB84 protocol with unbalanced signal intensities.

Protocol Description

• Alice’s output:

• Phases: (equally probable)

Simulation

• Loss-only channel + detection inefficiency ➔ transmissivity 𝜂
• Two alternative loss scenarios:

➢ Trusted loss: detector efficiency = 𝜂𝑑𝑒𝑡
➢ Untrusted loss: detector efficiency = 1 (i.e. all loss due to Eve)

• Dark counts ➔ classical post-processing map

• Two alternative noise scenarios:

➢ Trusted noise: each detector has the same dark count rate 𝑝𝑑
➢ Untrusted noise: assume Bob’s detectors “dark count free”

(i.e. Eve causes the dark counts)

➔may lead to unphysical constraints
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Parameters: Alice’s tagged photon number cutoff NA = 3, Bob’s flag-state

photon number cutoff NB = 4, 𝑝𝑑 = 8.5 × 10−7, 𝑓𝐸𝐶 = 1.22

Fig. 2: Our optimal lower bounds for secure key rates per clock cycle for both 
trusted and untrusted dark counts versus total transmissivity η.

Fig. 3: Percentage change in key rates comparing our optimal lower bounds for key rates with [2]’s 
optimal key rates versus total transmissivity η. We label the changes for trusted (untrusted) dark 

counts with solid (dotted) lines. A positive change means that our key rate is higher.

Fig. 4: Assuming trusted dark counts, our lower bounds for key rates plotted against the 
proportion (in percentage) of the trusted loss coming from the detection inefficiency of 

Bob’s detectors to a fixed total loss corresponding to total transmissivity η = 0.1.
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Effect of Trusted Loss

• Our key rates are higher than [2]’s mainly in low-loss regime

• Encounter unphysical constraints for untrusted noise at 𝜂 < 0.2

Compare key rates with previous results

Observation

• key rates 
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larger 𝜅 values
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