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* Phase-encoded BB84 experiments have unbalanced signal amplitudes Parameters: Alice’s tagged photon number cutoff Ny = 3, Bob’s flag-state
due to loss in phase modulators. photon number cutoff Ng = 4, p; = 8.5 X 1077, fzc = 1.22
* Ref. [1, 2] turn the security proof into a standard BB84 proof using decoy - k=001 —# k=05
states, signal tagging, and the qubit squashing model [3]. g | i
- k=0.3
* The qubit approach pessimistically assumes that Eve has full access to >0
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the information carried by multiphoton signals.
=» underestimate the secure key rate of this protocol.

Observation

* key rates
Increase with
larger k values

» Here, our different proof technique achieves higher key rates.
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Differences between our approach and Refs. [1, 2]'s: g 07
: : . : . O
 We apply the numerical analysis formulated in [4] to obtain reliable lower X2 —20 . . | | |
bounds on the key rates °9 02 o 06 08 -0
y : Total transmissivity n
e Source side: tag the phOtOﬂ number of the Signals and extend our analysis Fig. 3 Percentage change in key rates -co!n-paring our optimal lower bounds for key rates with [2]’s
: optimal key rates versus total transmissivity n. We label the changes for trusted (untrusted) dark
o a hlgher tagged threshold photon number. counts with solid (dotted) lines. A positive change means that our key rate is higher.
* Recelver side: use flag-state squashing model [5] (see Yanbao Zhang'’s talk) + Our key rates are higher than [2]'s mainly in low-loss regime
| A | * Encounter unphysical constraints for untrusted noise atn < 0.2
Pn<N
— Prn<Ng Effect of Trusted Loss
p_b QND D %039 @ k=01 W k=10
—4&— k=0.5
Pononoh - 1) (] k) (k]
n>Np 0.025
Pn>Npg / B
0,020
to avoid extra qubit errors from the qubit squashing model. S * Key rates increase
< (0.015 ! .
- Need lower bound for p(n < Np) == Tr(pn<n) = preserve entanglement o :N'th h|g_herfc7tjited
=>» preserve some parts of the multi-photon generated private information ‘go_om- L Ht/ oss ratio —§—,
Q
Summary of technical details: ) 0005 | A AT AT A
« Lower bound p(n < Ng)with Markov’s inequality + cross-click probability — e o o o o o o e’
0.000 . . . . . . . . . . .
* Infinite decoy + Eve’s QND photon counting + signal tagging R SO SR
= Decomposition of privacy amp”fica’[ion (PA) term in key rate formula Fig. 4: Assuming trusted dark counts, our lower bounds for key rates plotted against the
' N4 proportion (in percentage) of the trusted loss coming from the detection inefficiency of
~ ~ Bob’s detectors to a fixed total loss corresponding to total transmissivity n = 0.1.
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= - ang . Conclusion
« Each PA term independent of signal intensity & =» easy to optimise over

New secuty proot " Higher keyrates than

» Loss-only channel + detection inefficiency =» transmissivity 7 g [2]'s In low-loss regime
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* Two alternative loss scenarios: p <
» Trusted loss: detector efflc:l.er?cy = Nget | Flag-state squashing Discover untru.sted noise may

> Untrusted loss: detector efficiency = 1 (i.e. all loss due to Eve) model [5] . lead to unphysical constraints )

« Dark counts = classical post-processing map + p ~
 Two alternative noise scenarios: Explored trusted loss scenario

» Trusted noise: each detector has the same dark count rate p,4

» Untrusted noise: assume Bob’s detectors “dark count free”
= may lead to unphysical constraints Channel > Bob + Noise References
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(not allowed in [1,2]'s proof)
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(+ no replacement model for noise) —> %
Channel Noise > Bob

l * l Industry  Industrie
N s E B c Canada Canada

Ui BN =



https://arxiv.org/abs/2007.08662

