AlIT QKD Post Processing and Network Software AlT

Oliver Maurhart, Stefan Petscharnig, Thomas Grafenauer, Bernhard Omer, Michael Hentschel, Philipp-Sebastian Vogt, Christoph Pacher

AIT Austrian Institute of Technology GmbH, Center for Digital Safety & Security, 1210 Vienna, Austria.
Contact: oliver.maurhart@ait.ac.at, Stefan.Petscharnig@ait.ac.at

Introduction

Quantum Key Distribution (QKD) involves in a first step a physical exchange of quantum signals between a pair of devices. Whatever the realization of this physical layer of QKD
S, it outputs a pair of correlated values. In the second step these correlated values are transformed by a classical post-processing protocol into Information Theoretically Secure
(ITS) keys. The AIT QKD framework (e.g. used in [1] and [2]) sees each QKD post-processing step as a dedicated process, a QKD module. Each QKD module has the built-in
capability to run concurrently in parallel within a QKD post processing pipeline.

The AIT QKD software [3] is available under different licence models (research/commercial) and AIT welcomes suggestions from academic groups and industry to co-operate.

Acknowledgements: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820466 (CiViQ).

QKD Pipeline QKD Module

» A QKD Pipeline realizes quantum key
distillation ranging from the detected
signals up to a shared secret series of
bits: the secure key. Starting with
guantum signal acquisition each QKD
Module concentrates on a dedicated
task.

» The building block of a QKD pipeline is a
single QKD Module. Such modules are
incorporated as UNIX processes.

» The AIT QKD Library provides all

OR functions for communication: from/to

O = the next QKD Module, from/to the peer

send QKD Module. All these functions are

mimicked as POSIX calls.

» Finally the shared secure keys are V » With the help of ready-to-use ITS crypto
stored inside a key store which Priv. Amplifica, filgrg:;[) | functions the AIT QKD Software
alongside a Crypto Engine provides ’ CE 'T> Crypto Engine environment enables ITS authenticated
means to directly extract keys from the communication channels with the peer

Crypto Context '

evhash-96:02cc942de299: £4b0d86££d53

Scheme : Key : State

QKD Module

T
=
o
2
o —
3 =
®
1)
=
=

5
n |

system via “key pumps”. a k QKD Module during post processing.
> Additionally a VPN can be fed by secure 4_ U ermatn ool secures e » Any QKD Module may change the current crypto setup during key distillation at
keys will by instantiating new crypto contexts and finalizing the old one.
QKD Module Orchestration CoAP as a new IPC for QKD Modules
The next release will provide every QKD Module with a CoAP service context. With The next release uses the Constrained Application Protocol (CoAP) as an Inter-
this CoAP interface, a single QKD Module serves a RESTful API. Process Communication Protocol (IPC) in between the QKD Modules.
Since every QKD Module has its own service point, a central authority, the QKD | | | | | |
Protocol Manager (QPM), orchestrates all QKD Modules and therefore controls the CoAP is a lightweight integration of the ideas and concepts of the successful REST
QKD pipeline. approach in today‘s network application landscape. At its simplest form CoAP
consolidates only four verbs:
> GET: qguery QKD Module states (e.g. key bit per second)

The QPM itself operates
a CoAP service as well to
which administrators can

connect and control the '
whole setup.

Start »> PUT: update QKD Module states (e.g. modify error correction
e narameters)

Register

O

> DELETE: notusedona QKD Module

Since CoAP runs also primarily on UDP, we see the binary, low-overhead

.................... implementation suitable for environments with limited and tight resource budget.
rrsnnnnnanannnnnnn

Register
—p

CoAP

Launching and Hibernating QKD Pipelines

________ Sta”» The QKD Pipeline definition is comprised as XML file. It defines the set and order of
D i the QKD Modules along with their configurations. These QKD pipeline files are used
— by the QPM to launch a full pipeline.

CoAP

Administrator

The QPM can instruct each QKD Module to store its current state.
The QPM can instruct each QKD Module to load a previously saved state.

Start
S This mechanism can be used for satellite-based QKD: the QPM on the satellite starts
Register _ . .
— and maintains separate QKD pipelines with each ground-station it passes.
Start
::::::F.;::::_::t::::::' Privacy References
egister
Corr [1] M. Peev et al., ""The SECOQC Quantum Key Distribution Network in Vienna", New

Journal of Phys., 11, 075001 (2009). https://doi.org/10.1088/1367-2630/11/7/075001

Only the QPM operates
on a well known port and
address. A flexible way of
organizing an arbitrary
set of QKD Modules is
achieved by:

1. The QKD Module is started
by the QPM.

2. The QKD Module binds its
CoAP context to an arbitrary
port.

3. The QKD Module registers
itself on the QPM.

[2] T. Gehring et al., 'Implementation of continuous-variable quantum key distribution

Start with composable and one-sided-device-independent security against coherent attacks",
<Reg|ster> Nature Communications 6, 8795 (2015). http://dx.doi.org/10.1038/ncomms9795
—oar [3] AIT QKD Software platform, https://sqt.ait.ac.at/software/projects/qkd

X7\ :
" RYPT online o August 10-14, 2020

4. The QPM starts supervising
the QKD Module.

https://doi.org/10.1088/1367-2630/11/7/075001
http://dx.doi.org/10.1038/ncomms9795
https://sqt.ait.ac.at/software/projects/qkd
mailto:oliver.maurhart@ait.ac.at
mailto:Stefan.Petscharnig@ait.ac.at

