Influence of birefringent fiber joints on the visibility drift in a Mach–Zehnder interferometer

G. Krylov1,2,3,4, O. Fat’yanov2,3,4, A. Duplinskii2,3,4, Y. Kurochkin2,3,4

1National Research Nuclear University "MEPhI", Moscow, 115409, Russia
2Russian Quantum Center, Moscow, 121205, Russia
3QRate, Moscow, 12353, Russia
4Quantum Communications Center of NTI, National University of Science and Technology MISIS, Moscow, 119049, Russia

Interferometric devices used in QKD require matching the polarization states and phases of light beams in both arms. An accepted method for phase matching is altering the optical path length in one of the interferometer arms. In fiber devices, this may be realized in the form of a fiber stretcher. A widely used method for matching the polarization states is utilizing linear polarization maintaining fiber (PMF), which is intended for maintaining the linear polarization of radiation \cite{1}. One could consider these aims to be comprehensive to provide stable visibility and, as a result, QBER. However, it is not unusual to obtain a significant change of QBER during key sharing. In our work we show one of the possible causes of such drastic QBER changes \cite{2}. It is shown that imperfect joints of linear PMF in a fiber interferometer may result in an uncontrolled visibility and QBER drift under varying environmental conditions even with a standard phase matching device.

Results of numerical simulation

Consider propagation of optical radiation through a double Mach–Zehnder interferometer. While passing through the interferometer, light wave gradually goes to a polarization mode initially not intended for propagation. The fiber stretcher is aimed at affecting the fiber section so that the induced phase difference would provide the maximal visibility. A piezoelectric actuator which slightly varies the fiber length, almost identically changes the optical path length along both fast and slow axes. However, for reaching the maximal visibility, it is necessary to affect the fiber in such a way that the optical path lengths along both the axes will vary independently, because the phase differences in the interferometer arms corresponding to the fast and slow axes vary differently depending on external conditions. It follows that a standard piezoelectric actuator can only partially compensate for a variation of the interferometer visibility.

Data obtained by numerical simulation testify a substantial influence of the quality and number of joints in a BF fiber on the drift of the QBER under external conditions.

It is shown that imperfect joints of linear birefringent fibres in a fiber interferometer may result in an uncontrolled visibility drift under varying environmental conditions even with a standard phase matching device. As an example, a double Mach–Zehnder interferometer is considered, which is employed in schemes of quantum key distribution. Results of numerical simulation demonstrate the standard deviation of QBER, which is comparable to an average QBER.
