

High-speed MDI-QKD with silicon photonics: experiment and side channels

arXiv: 1911.00690 (2019)

Wei Li, Feihu Xu

Kejin Wei, Hao Tan, Hao Min, Xiao Jiang, Sheng-Kai Liao, Cheng-Zhi Peng, and Jian-Wei Pan

National Laboratory for Physical Sciences at the Microscale,

University of Science and Technology of China (USTC)

QKD networks

- C. Elliott, arXiv: quant-ph/0503058 (2005). U.S.
- M. Peev et al., New J. Phys. 11, 075001 (2009). Europe
- T.-Y. Chen et al., Opt. Express 18, 27217 (2010). China
- M. Sasaki et al., Opt. Express 19, 10387 (2011). Japan

- B. Frohlich et al., Nature 501, 69 (2013).
- R. J. Hughes et al., arXiv:1305.0305 (2013).

QKD networks with untrusted relay is needed

Chip-based QKD

Si

- C. Ma et al., Optica 3, 1274 (2016). (Transmitter, BB84)
- P. Sibson et al., Optica 4, 172 (2017). (COW, BB84)
- D. Bunandar et al., PRX 8, 021009 (2018) (**BB84 field test**)
- C. Agenesi et al., Optics Letters 2, 44 (2019). (Laser for MDI)
- G. Zhang et al., Nat. Photonics 13, 839 (2019).

(Continuous variable)

InP

- P. Sibson et al., Nat. Commun. 8, 13984 (2017).
 (COW, BB84, DPS)
- H. Semenenko et al., Optics Letters 2, 44 (2019).
 (Laser for MDI)
- H. Semenenko et al., Optica 7, 238 (2019). (MDI, concurrent with our work)

Integration is inevitable for future developments

Chip-based MDI-QKD network

- Enhanced security: *untrusted* relay
- Low cost: mass production
- Scalable: star-type topology
- Chip: transmitter only, free of loss

GHz chip-based MDI-QKD setup

• Si chip integrates all the encoding components for transmitter

K. Wei*, W. Li* et al., arXiv: 1911.00690 (2019), accepted by PRX.

Experimental challenges

1.25 GHz modulation

High-visibility independent laser sources

- Four independently adjustable levels
- 10 GSa/s, 7.5 Vpp
- DC coupled

Stable operation

Lab view

The transmitter is ready to be enclosed in a shoebox-size chassis

Result

Reference	Clock rate(MHz)	Channel loss(dB)	Secret key rate(bps)	finite-key
Tang et al., 2016	10	2.0	25	10-3
Tang et al., 2014	75	9.9	67	10-9
Valivathi et al., 2017	20	16.0	100	Asymptotic
Yin et al., 2016	75	19.5	1380	10-10
Comandar et al., 2016	1000	20.4	4567	10-10
Ours	1250	20.4	6172	10-10
		28.0	268	10-10

Fastest MDI-QKD system and highest reported key rates

• Side channels in high-speed QKD

• Side channels in chip-based QKD

Patterning effect on modulation

Pattern	average intensity of second pulse	deviation from $s \rightarrow x$	
$S \rightarrow S$	1.000	-	
$\mu \rightarrow s$	1.002	0.24%	
$\upsilon \rightarrow s$	1.003	0.32%	
$0 \rightarrow s$	1.003	0.27%	
$s \to \mu$	0.617	-	
$\mu \to \mu$	0.626	1.51%	
$\upsilon \to \mu$	0.610	-1.08%	
$0 ightarrow \mu$	0.632	2.44%	
$s \rightarrow \upsilon$	0.029	-	
$\mu \to \upsilon$	0.027	-5.57%	
$\upsilon \to \upsilon$	0.025	-11.95%	
$0 \rightarrow \upsilon$	0.027	-5.90%	

Intensity deviation is less than 12%

K.-i. Yoshino et al., npj Quantum Inf. 4, 8 (2018).

Patterning effect: modulator + driving signal

2 On On D On 🛛 1 On 1.00 V/ υ 100 mV deviation 657.8 ps H 100 ps/ 401 T -1.23 V -22 Measurements Markers Histogram Color Grade Status Scales Mean -2.7579266 V p-p 338.7 mV Y Scale 2.066 khits/ Std Dev 43.7410 mV Min -2.9032 V Mode 2.7742 V µ±10 74.3% Max -2.5645 V Y Offset 0 hits Hits 55.315 khits μ±2σ 96.5% Bin Width 16.1 mV Peak 8.265 khits 99.89

 $u+3\sigma$

Carrier depletion modulator 18 GHz @3 dB

DC coupled is better than AC coupled

• Side channels in high-speed QKD

• Side channels in chip-based QKD

Trojan Horse attack

Time-bin encoding transmitter reflectivity: -42.87dB

Lucamarini et al., Phys. Rev. X 5, 031030 (2015).

Reflectivity of our chip is smaller

QKD against Trojan Horse attack

MDI-QKD is more vulnerable to Trojan Horse attack

K. Tamaki et al., New Journal of Physics 18, 065008 (2016).

Other side channels

- Polarization dependent loss Less than 0.8 dB
- Intensity fluctuation Less than 0.04 dB
- Phase randomization
 T. Kobayashi et al., Phys. Rev. A 90, 032320 (2014).

Solution?

K. Tamaki et al., Phys. Rev. A 90, 052314 (2014). M. Pereira et al., npj Quantum Inf. 5, 62 (2019).

Summary

K. Wei*, W. Li* et al., arXiv: 1911.00690 (2019), accepted by PRX.

- Patterning effect
- Trojan Horse attack
- Polarization dependent loss

- Silicon photonic chip-based MDI-QKD
- 1.25 GHz random modulation
- Highest secret key rate
- Side channels are characterized

- Intensity fluctuation
- Phase randomization

Acknowledgement

Prof. Feihu Xu

Prof. Jian-Wei Pan

Funding

Thank you for your attention!

Email: weil@ustc.edu.cn