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Motivations

This paper: fully-quantum security for classical encryption.

Classical Security

Classical adversaries, classical communication

Post-quantum Security

Quantum adversaries, classical communication

Fully-Quantum Security [BZ'13, DFNS'14, GHS'16]

Quantum adversaries, quantum communication.
» Running classically obfuscated programs in quantum computers

» Exotic quantum attacks: frozen smart-card attack
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@ Superposition access to encryption oracle
@® Superposition access to decryption oracle in chosen-ciphertext security.

BZ'13 Superposition access to encryption and decryption oracles, but challenges
are classical, for both PKE and SKE.
GHS'16  Quantum challenges, but restricted to a special minimal oracle, limited to
only SKE and CPA security.

Open  Quantum challenges, in the standard oracle model, for both PKE and SKE
with CCA security.
» No-cloning Theorem
» Measurement destructiveness
» Impossibility for any Left-or-Right indistinguishability notion [BZ'13]
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Our Work

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both
secret- and public-key encryption.

Our Techniques

» Switching from a Left-or-Right indistinguishability notion to a Real-or-Random
indistinguishability notion.
» Adapting Zhandry's compressed oracle technique to randomized functions.
[Zhandry'19]
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» Goal: on-the-fly simulation of random oracles in the quantum setting.
Four steps
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® Look at Fourier Domain

Fourier

Transform

[12,9) 4 100 = |2,y © hi@)) 4 M) | [2,9) 4 1h)o = 2,9) 410 & Puy)o

1@ zhandry, CRYPTO'19



Zhandry's Recording Technique [zhandry'19]*

» Goal: on-the-fly simulation of random oracles in the quantum setting.
Four steps

® Quantum-ify

® Look at Fourier Domain

© Compress

1@ zhandry, CRYPTO'19



Zhandry's Recording Technique [zhandry'19]*

» Goal: on-the-fly simulation of random oracles in the quantum setting.
Four steps
® Quantum-ify
® Look at Fourier Domain
© Compress
Initial Oracle State D = {}. Query(z,y, D):
© If (z,y) € D, D=DU{(x,0)}

® D=D\{(z,y)}U{(z,y@y)}
© D=D\{(z,0)} if 3(z,0) € D
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» Goal: on-the-fly simulation of random oracles in the quantum setting.
Four steps

® Quantum-ify

® Look at Fourier Domain

© Compress

O Revert back to Primal Domain

The oracle now has information about the adversary's queries.
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Zhandry's Recording Technique [zhandry'19]*

» Goal: on-the-fly simulation of random oracles in the quantum setting.
Four steps

® Quantum-ify

® Look at Fourier Domain

© Compress

O Revert back to Primal Domain

Perfect Simulability

This is a perfect simulation for quantum random oracles.
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Consider a randomized function f(z;7)
@ Quantum-ify
® Look at Fourier Domain
©® Compress
Initial Oracle State D = {}. Query(z,y, D):
® If A(r,z,y') € D, D=DU{(r,z, f(z;7))}
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Recording Technique for Randomized Functions

Consider a randomized function f(z;7)
@ Quantum-ify
® Look at Fourier Domain
©® Compress
O Revert back to Primal Domain

The above simulation needs 3 applications of Uy. Thus it is not useful for:
» Proving one-time security
» Security reductions (Encrypt-then-Mac)

Simulation with 1 call to Uy

In the randomized setting, the database is always initialized to “zero”, thus we can
simulate with only one call to Uy.
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» qIND security = IND security
» Composability
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» One-time pad encryption style (stream cipher, GCM, CFB, OFB, CTR ...) is
insecure.

Achievability

» Encrypt-then-MAC is qIND-qCCA
> IND-qCCA PKE + OWF = qIND-qCCA PKE



Thank you!

10/10



