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Motivations

This paper: fully-quantum security for classical encryption.

Classical Security

Classical adversaries, classical communication

Post-quantum Security

Quantum adversaries, classical communication

Fully-Quantum Security [BZ’13, DFNS’14, GHS’16]

Quantum adversaries, quantum communication.

I Running classically obfuscated programs in quantum computers

I Exotic quantum attacks: frozen smart-card attack
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Prior Results

1 Superposition access to encryption oracle

2 Superposition access to decryption oracle in chosen-ciphertext security.

BZ’13 Superposition access to encryption and decryption oracles, but challenges
are classical, for both PKE and SKE.

GHS’16 Quantum challenges, but restricted to a special minimal oracle, limited to
only SKE and CPA security.

Open Quantum challenges, in the standard oracle model, for both PKE and SKE
with CCA security.
I No-cloning Theorem
I Measurement destructiveness
I Impossibility for any Left-or-Right indistinguishability notion [BZ’13]
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Our Work

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both
secret- and public-key encryption.

Our Techniques

I Switching from a Left-or-Right indistinguishability notion to a Real-or-Random
indistinguishability notion.

I Adapting Zhandry’s compressed oracle technique to randomized functions.
[Zhandry’19]
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Zhandry’s Recording Technique [Zhandry’19]1

I Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

1 Quantum-ify

2 Look at Fourier Domain

3 Compress

4 Revert back to Primal Domain

Perfect Simulability

This is a perfect simulation for quantum random oracles.

1© Zhandry, CRYPTO’19
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Recording Technique for Randomized Functions

Consider a randomized function f(x; r)

1 Quantum-ify

2 Look at Fourier Domain

3 Compress

4 Revert back to Primal Domain

Caveat!

The above simulation needs 3 applications of Uf . Thus it is not useful for:

I Proving one-time security

I Security reductions (Encrypt-then-Mac)

Simulation with 1 call to Uf

In the randomized setting, the database is always initialized to “zero”, thus we can
simulate with only one call to Uf .
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IND-CCA (Real-or-Random)2

ExptbSE(λ,A):

1 k
$← K()

2 (x, state)← AEnck,Deck
1 (λ)

3 x0 ← x, x1
$← X

4 y? ← Enck(xb)

5 b′ ← AEnck,Dec?k
2 (y?, state)

6 return b′

I Dec?k(y) =

{
⊥ if y = y?

Deck(y)

I πb =

{
π if b = 1

1 if b = 0

∣∣Pr
[
Expt1SE(λ,A) = 1

]
− Pr

[
Expt0SE(λ,A) = 1

]∣∣ ≤ ε
2Single-Challenge
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qIND-qCCA (Real-or-Random)

ExptbSE(λ,A):

1 k
$← K()

2
∑

x,yαx,y |x, y, φx,y〉︸ ︷︷ ︸
|Φ〉

← A|Enck〉,|Deck〉
1 (λ)

3 π
$← Π

4
∑

x,y αx,y |x, y ⊕ Enck(π
b(x)), φx,y〉︸ ︷︷ ︸

|Ψ〉

⊗Dx,y ← Enck◦πb |Φ〉

5 b′ ← A|Enck〉,|Dec?k 〉
2 (|Ψ〉)

6 return b′

Dec?k |y, z〉 ⊗D =

{
|y, z ⊕ Deck(y)〉 if @(w, y) ∈ D
|y, z ⊕ w〉 if ∃(w, y) ∈ D
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Properties & Achievability

Properties

I qIND security ⇒ IND security

I Composability
I IND-qCCA < qIND-qCPA

I One-time pad encryption style (stream cipher, GCM, CFB, OFB, CTR ...) is
insecure.

Achievability

I Encrypt-then-MAC is qIND-qCCA

I IND-qCCA PKE + OWF ⇒ qIND-qCCA PKE
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Thank you!


