On Security Notions for Encryption in a Quantum World

Céline Chevalier ¹ Ehsan Ebrahimi ² Quoc-Huy Vu ¹

¹Université Panthéon-Assas Paris II ²University of Luxembourg

Classical Security

Classical adversaries, classical communication

Classical Security

Classical adversaries, classical communication

Post-quantum Security

Quantum adversaries, classical communication

Classical Security

Classical adversaries, classical communication

Post-quantum Security

Quantum adversaries, classical communication

Fully-Quantum Security [BZ'13, DFNS'14, GHS'16]

Quantum adversaries, quantum communication.

- Running classically obfuscated programs in quantum computers
- Exotic quantum attacks: frozen smart-card attack

This paper: fully-quantum security for classical encryption.

Classical Security

Classical adversaries, classical communication

Post-quantum Security

Quantum adversaries, classical communication

Fully-Quantum Security [BZ'13, DFNS'14, GHS'16]

Quantum adversaries, quantum communication.

- Running classically obfuscated programs in quantum computers
- Exotic quantum attacks: frozen smart-card attack

1 Superposition access to encryption oracle

1 Superposition access to encryption oracle

$$\sum_{x} \alpha_x \left| x, y \right\rangle \mapsto \sum_{x} \alpha_x \left| x, y \oplus \mathsf{Enc}(x) \right\rangle$$

- 1 Superposition access to encryption oracle
- **2** Superposition access to decryption oracle in chosen-ciphertext security.

- 1 Superposition access to encryption oracle
- 2 Superposition access to decryption oracle in chosen-ciphertext security.
 - BZ'13 Superposition access to encryption and decryption oracles, but challenges are classical, for both PKE and SKE.

- 1 Superposition access to encryption oracle
- 2 Superposition access to decryption oracle in chosen-ciphertext security.
 - BZ'13 Superposition access to encryption and decryption oracles, but challenges are classical, for both PKE and SKE.
- GHS'16 Quantum challenges, but restricted to a special minimal oracle, limited to only SKE and CPA security.

- 1 Superposition access to encryption oracle
- 2 Superposition access to decryption oracle in chosen-ciphertext security.
 - BZ'13 Superposition access to encryption and decryption oracles, but challenges are classical, for both PKE and SKE.
- GHS'16 Quantum challenges, but restricted to a special minimal oracle, limited to only SKE and CPA security.
 - Open Quantum challenges, in the standard oracle model, for both PKE and SKE with CCA security.
 - ► No-cloning Theorem
 - Measurement destructiveness
 - Impossibility for any Left-or-Right indistinguishability notion [BZ'13]

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both secret- and public-key encryption.

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both secret- and public-key encryption.

Our Techniques

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both secret- and public-key encryption.

Our Techniques

Switching from a Left-or-Right indistinguishability notion to a Real-or-Random indistinguishability notion.

Main Results

An achievable, meaningful quantum notion of chosen-ciphertext security for both secret- and public-key encryption.

Our Techniques

Switching from a Left-or-Right indistinguishability notion to a Real-or-Random indistinguishability notion.

► Adapting Zhandry's compressed oracle technique to randomized functions.

[Zhandry'19]

▶ Goal: on-the-fly simulation of random oracles in the quantum setting.

► Goal: on-the-fly simulation of random oracles in the quantum setting. **Four steps**

► Goal: on-the-fly simulation of random oracles in the quantum setting. **Four steps**

1 Quantum-ify

► Goal: on-the-fly simulation of random oracles in the quantum setting. **Four steps**

1 Quantum-ify

Measuring $\sum_{h} \left| h \right\rangle = h \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{U}$

Goal: on-the-fly simulation of random oracles in the quantum setting.
 Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain

Goal: on-the-fly simulation of random oracles in the quantum setting.
 Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain

$$\boxed{|x,y\rangle_{\mathcal{A}}|h\rangle_{\mathcal{O}}\mapsto|x,y\oplus h(x)\rangle_{\mathcal{A}}|h\rangle_{\mathcal{O}}} \xrightarrow[]{\text{Fourier}} \boxed{|x,y\rangle_{\mathcal{A}}|h\rangle_{\mathcal{O}}\mapsto|x,y\rangle_{\mathcal{A}}|h\oplus P_{x,y}\rangle_{\mathcal{O}}}$$

Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress

Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress

Initial Oracle State $D = \{\}$. Query(x, y, D): 1 If $\nexists(x, y') \in D$, $D = D \cup \{(x, 0)\}$ 2 $D = D \setminus \{(x, y')\} \cup \{(x, y \oplus y')\}$ 3 $D = D \setminus \{(x, 0)\}$ if $\exists (x, 0) \in D$

▶ Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

¹© Zhandry, CRYPTO'19

Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

The oracle now has information about the adversary's queries.

¹© Zhandry, CRYPTO'19

▶ Goal: on-the-fly simulation of random oracles in the quantum setting.

Four steps

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Perfect Simulability

This is a perfect simulation for quantum random oracles.

¹© Zhandry, CRYPTO'19

Consider a randomized function f(x;r)

1 Quantum-ify

Consider a randomized function f(x; r)

1 Quantum-ify

Measuring $\sum_r |r\rangle = r \stackrel{\mbox{\sc s}}{\leftarrow} \mathcal{U}$

- 1 Quantum-ify
- 2 Look at Fourier Domain

- 1 Quantum-ify
- 2 Look at Fourier Domain

$$|x,y\rangle_{\mathcal{A}} |r,f_{r}\rangle_{\mathcal{O}} \mapsto |x,y \oplus f(x;r)\rangle_{\mathcal{A}} |r,f_{r}\rangle_{\mathcal{O}} \xrightarrow{\mathsf{QFT}} \boxed{|x,y\rangle_{\mathcal{A}} |r,f_{r}\rangle_{\mathcal{O}} \mapsto |x,y\rangle_{\mathcal{A}} |r,f_{r} \oplus P_{x,y}\rangle_{\mathcal{O}}}$$

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress

Consider a randomized function f(x; r)

- Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress

Initial Oracle State $D = \{\}$. Query(x, y, D): 1 If $\nexists(r, x, y') \in D$, $D = D \cup \{(r, x, f(x; r))\}$ 2 $D = D \setminus \{(r, x, y')\} \cup \{(r, x, f(x; r) \oplus y')\}$ 3 $D = D \setminus \{(r, x, 0)\}$ if $\exists (r, x, 0) \in D$

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Consider a randomized function f(x; r)

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Caveat!

The above simulation needs 3 applications of U_f . Thus it is not useful for:

Consider a randomized function f(x;r)

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Caveat!

The above simulation needs 3 applications of U_f . Thus it is not useful for:

Proving one-time security

Consider a randomized function f(x;r)

- 1 Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Caveat!

The above simulation needs 3 applications of U_f . Thus it is not useful for:

- Proving one-time security
- Security reductions (Encrypt-then-Mac)

Consider a randomized function f(x; r)

- Quantum-ify
- 2 Look at Fourier Domain
- 3 Compress
- 4 Revert back to Primal Domain

Caveat!

The above simulation needs 3 applications of U_f . Thus it is not useful for:

- Proving one-time security
- Security reductions (Encrypt-then-Mac)

Simulation with 1 call to U_{f_1}

In the randomized setting, the database is always initialized to "zero", thus we can simulate with only one call to $U_f.\,$

 $\operatorname{Expt}_{\mathcal{SE}}^{b}(\lambda, \mathcal{A})$: 1 k $\stackrel{\$}{\leftarrow} \mathcal{K}()$ **2** $(x, \mathsf{state}) \leftarrow \mathcal{A}_1^{\mathsf{Enc}_k, \mathsf{Dec}_k}(\lambda)$ $3 x_0 \leftarrow x, x_1 \xleftarrow{s} \mathcal{X}$ 4 $y^{\star} \leftarrow \mathsf{Enc}_{\mathbf{k}}(x_{b})$ **5** $b' \leftarrow \mathcal{A}_2^{\mathsf{Enc}_k, \mathsf{Dec}_k^\star}(y^\star, \mathsf{state})$ 6 return b'

•
$$\mathsf{Dec}_{k}^{\star}(y) = \begin{cases} \bot & \text{if } y = y^{\star} \\ \mathsf{Dec}_{k}(y) \end{cases}$$

$$\left| \Pr \left[\mathsf{Expt}^1_{\mathcal{SE}}(\lambda, \mathcal{A}) = 1 \right] - \Pr \left[\mathsf{Expt}^0_{\mathcal{SE}}(\lambda, \mathcal{A}) = 1 \right] \right| \le \epsilon$$

²Single-Challenge

 $\mathsf{Expt}^{b}_{\mathcal{SE}}(\lambda, \mathcal{A})$: 1 k $\stackrel{\$}{\leftarrow} \mathcal{K}()$ $(x, \mathsf{state}) \leftarrow \mathcal{A}_1^{\mathsf{Enc}_k, \mathsf{Dec}_k}(\lambda)$ $x_0 \leftarrow x, x_1 \stackrel{\$}{\leftarrow} \mathcal{X}$ $y^{\star} \leftarrow \mathsf{Enc}_{k}(x_{h})$ $b' \leftarrow \mathcal{A}_2^{\mathsf{Enc}_k, \mathsf{Dec}_k^\star}(y^\star, \mathsf{state})$ return b'

 $\blacktriangleright \ \, \mathsf{Dec}^\star_{\mathbf{k}}(y) = \begin{cases} \downarrow & \text{if} \quad y = y^\star \\ \mathsf{Dec}_{\mathbf{k}}(y) \end{cases}$

$$\left| \Pr\left[\mathsf{Expt}^{1}_{\mathcal{SE}}(\lambda, \mathcal{A}) = 1 \right] - \Pr\left[\mathsf{Expt}^{0}_{\mathcal{SE}}(\lambda, \mathcal{A}) = 1 \right] \right| \leq \epsilon$$

²Single-Challenge

 $\operatorname{Expt}_{\mathcal{SE}}^{b}(\lambda, \mathcal{A})$: 1 k $\stackrel{s}{\leftarrow} \mathcal{K}()$ **2** $(x, \text{state}) \leftarrow \mathcal{A}_1^{\mathsf{Enc}_k, \mathsf{Dec}_k}(\lambda)$ $3 x_0 \leftarrow x, x_1 \xleftarrow{s} \mathcal{X}$ 4 $y^{\star} \leftarrow \mathsf{Enc}_{\mathbf{k}}(x_{b})$ **5** $b' \leftarrow \mathcal{A}_2^{\mathsf{Enc}_k, \mathsf{Dec}_k^\star}(y^\star, \mathsf{state})$ **6** return b'

•
$$\mathsf{Dec}_{\mathbf{k}}^{\star}(y) = \begin{cases} x & \text{if } y = y^{\star} \\ \mathsf{Dec}_{\mathbf{k}}(y) \end{cases}$$

$$\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{1}(\lambda,\mathcal{A})=1\right]-\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{0}(\lambda,\mathcal{A})=1\right]\right| \leq \epsilon$$

²Single-Challenge

 $\operatorname{Expt}_{\mathcal{SE}}^{b}(\lambda, \mathcal{A})$: 1 k $\stackrel{s}{\leftarrow} \mathcal{K}()$ $(x, \text{state}) \leftarrow \mathcal{A}_1^{\mathsf{Enc}_k, \mathsf{Dec}_k}(\lambda)$ $x_0 \leftarrow x, x_1 \xleftarrow{s} \mathcal{X}$ $y^{\star} \leftarrow \operatorname{Enc}_{\mathbf{k}}(x_{h})$ $b' \leftarrow \mathcal{A}_2^{\mathsf{Enc}_k, \mathsf{Dec}_k^\star}(y^\star, \mathsf{state})$ return b'

•
$$\mathsf{Dec}_{\mathbf{k}}^{\star}(y) = \begin{cases} x & \text{if } y = y^{\star} \\ \mathsf{Dec}_{\mathbf{k}}(y) \end{cases}$$

$$\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{1}(\lambda,\mathcal{A})=1\right]-\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{0}(\lambda,\mathcal{A})=1\right]\right| \leq \epsilon$$

²Single-Challenge

 $\mathsf{Expt}^{b}_{\mathcal{SE}}(\lambda, \mathcal{A})$: 1 k $\stackrel{s}{\leftarrow} \mathcal{K}()$ **2** $(x, \text{state}) \leftarrow \mathcal{A}_1^{\mathsf{Enc}_k, \mathsf{Dec}_k}(\lambda)$ $\mathbf{3} \ \pi \stackrel{\$}{\leftarrow} \Pi$ 4 $y^{\star} \leftarrow \mathsf{Enc}_{\mathbf{k}}(\pi^{b}(x))$ **5** $b' \leftarrow \mathcal{A}_2^{\mathsf{Enc}_k, \mathsf{Dec}_k^\star}(y^\star, \mathsf{state})$ **6** return b'

•
$$\operatorname{Dec}_{\mathbf{k}}^{\star}(y) = \begin{cases} x & \text{if } y = y^{\star} \\ \operatorname{Dec}_{\mathbf{k}}(y) \end{cases}$$

• $\pi^{b} = \begin{cases} \pi & \text{if } b = 1 \\ \mathbb{1} & \text{if } b = 0 \end{cases}$

$$\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{1}(\lambda,\mathcal{A})=1\right]-\Pr\left[\mathsf{Expt}_{\mathcal{SE}}^{0}(\lambda,\mathcal{A})=1\right]\right| \leq \epsilon$$

²Single-Challenge

qIND-qCCA (Real-or-Random) $\underbrace{\operatorname{Expt}_{S\mathcal{E}}^{b}(\lambda, \mathcal{A}):}_{\mathbf{I} \ \mathbf{k} \stackrel{s}{\leftarrow} \mathcal{K}()}$

qIND-qCCA (Real-or-Random)
$\underline{Expt^b_{\mathcal{SE}}(\lambda,\mathcal{A})}:$
$1 \ k \stackrel{s}{\leftarrow} \mathcal{K}()$
$2 \underbrace{\sum_{x,y} \alpha_{x,y} x, y, \phi_{x,y} \rangle}_{ x } \leftarrow \mathcal{A}_1^{ Enc_k\rangle, Dec_k\rangle}(\lambda)$
$3 \pi \leftarrow \Pi$

qIND-qCCA (Real-or-Random)	
$\operatorname{Expt}^b_{\mathcal{SE}}(\lambda,\mathcal{A})$:	
1 k $\stackrel{\$}{\leftarrow} \mathcal{K}()$	
$2 \underbrace{\sum_{x,y} \alpha_{x,y} x, y, \phi_{x,y}}_{x,y,\phi_{x,y}} \leftarrow \mathcal{A}_1^{ Enc_k\rangle, Dec_k\rangle}(\lambda)$	
$\ket{\Phi}$	Use compressed oracle here
$3 \pi \stackrel{\$}{\leftarrow} \Pi$	
	- Enc _k $\circ\pi^{b}\ket{\Phi}$
$ \Psi angle$	

qIND-qCCA (Real-or-Random)
$Expt^b_{\mathcal{SE}}(\lambda,\mathcal{A})$:
$1 \ k \stackrel{s}{\leftarrow} \mathcal{K}()$
$(2) \underbrace{\sum_{x,y} \alpha_{x,y} x, y, \phi_{x,y} \rangle}_{ \Phi\rangle} \leftarrow \mathcal{A}_1^{ Enc_k\rangle, Dec_k\rangle}(\lambda)$
$3 \pi \stackrel{\$}{\leftarrow} \Pi$
5 $b' \leftarrow \mathcal{A}_2^{ Enc_k\rangle, Dec_k^\star\rangle}(\Psi\rangle)$

IND-qCCA (Real-or-Random)
$Expt^b_{\mathcal{SE}}(\lambda,\mathcal{A})$:
$1 \ k \stackrel{\$}{\leftarrow} \mathcal{K}()$
$ 2 \underbrace{\sum_{x,y} \alpha_{x,y} x, y, \phi_{x,y} \rangle}_{ \lambda, y, y} \leftarrow \mathcal{A}_1^{ Enc_k\rangle, Dec_k\rangle}(\lambda) $
$ \Phi \rangle$
$3 \pi \stackrel{s}{\leftarrow} \Pi$
$ \Psi\rangle$
5 $b' \leftarrow \mathcal{A}_2^{Link_k, Dec_k }(\Psi\rangle)$
(0 return b'

q

IND-qCCA (Real-or-Random)
$Expt^b_{\mathcal{SE}}(\lambda,\mathcal{A})$:
1 k $\stackrel{\$}{\leftarrow} \mathcal{K}()$
$2 \underbrace{\sum_{x,y} \alpha_{x,y} x, y, \phi_{x,y} \rangle}_{x,y, \phi_{x,y}} \leftarrow \mathcal{A}_1^{ Enc_k\rangle, Dec_k\rangle}(\lambda)$
$\langle \Phi \rangle$ $\pi \stackrel{\$}{\leftarrow} \Pi$
$4 \sum_{x,y} \alpha_{x,y} \underbrace{ x,y \oplus Enc_{k}(\pi^{b}(x)), \phi_{x,y}\rangle}_{\mathbf{A}} \otimes D_{x,y} \leftarrow Enc_{k} \circ \pi^{b} \Phi\rangle$
6 return b'

C

$$\mathsf{Dec}^{\star}_{\mathtt{k}} | y, z \rangle \otimes D = \begin{cases} | y, z \oplus \mathsf{Dec}_{\mathtt{k}}(y) \rangle & \text{if } \nexists(w, y) \in D \\ | y, z \oplus w \rangle & \text{if } \exists(w, y) \in D \end{cases}$$

Properties

- ▶ qIND security \Rightarrow IND security
- Composability
- ► IND-qCCA ⇔ qIND-qCPA

Properties

- ▶ qIND security \Rightarrow IND security
- Composability
- ► IND-qCCA ⇔ qIND-qCPA
 - One-time pad encryption style (stream cipher, GCM, CFB, OFB, CTR ...) is insecure.

Properties

- ▶ qIND security \Rightarrow IND security
- Composability
- ► IND-qCCA ⇔ qIND-qCPA
 - One-time pad encryption style (stream cipher, GCM, CFB, OFB, CTR ...) is insecure.

Achievability

- Encrypt-then-MAC is qIND-qCCA
- ► IND-qCCA PKE + OWF \Rightarrow qIND-qCCA PKE

Thank you!