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Introduction



Multi-party computation
(MPC)

83 Input (player i): xi

@ 3 v 1 @ Output: f(x1, ..., Xk)

@ Output (player i): fi(x1, ..., X
'%‘

@~ '©
1 This is the ideal situation.
" @ 10 What if there is no @ ?



https://www.flaticon.com/authors/pixel-perfect

Multi-party computation
(MPC)

/ 83 \ We want:

G e privacy of inputs

102 100 * correctness of outputs
A A

Xi v fi(X1, ..., Xk)

We cannot prevent:

@ é * lying about inputs
e unfairness
11 \ e / ﬁl

95



Goal: Quantum MPC
(MPQCQC)

/ @ \ This talk: protocol for MPQC

© ©

Rs R> ¢
A A

subroutine: classical MPC@

Up to k-1 G

Computationally secure

gate-by-gate, using

O (k(d + log(n))) quantum
rounds for d the {CNOT,T}-
depth of the g computation




MPQC: two approaches

/ @ \ 1. Secret sharing [CGS02]
@ @ e distribute inputs

Re Ra up to <k/2 dishonest

| 2. Authentication [DNS12]

G e protect inputs
\ a / Rs e hope: up to k-1 dishonest

[CGSO02] Crépeau, Gottesman, aﬁld Smith. Secure multi-party quantum computation. (STOC 2002)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)



Authentication



Clifford code

Key: C e Clifford,, 11
Encoding: 1) — C (|¢) ® [0)©")

Decoding: apply C'T measure traps

Theorem (informal): for any A on n + 1 qubits, the

probability that A changes |1), but is not detected at
decoding is very small ( 27 ™).

Bonus: the Clifford code also provides privacy.



Clifford code in MPQC

/@\

e What if the encoding player
‘ ‘ is dishonest?

e How to do computation?
Data is unalterable!

\4

Answers: use classical multi-
party computation! @




Public authentication test

/ @ \ C6C5C4C3C>C1([Y) @ 10°™))
@ O 8, @
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Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC:

e Select g €gr GL(2n,F3) . Note:g(y) = 0°" iff y = 0"
Lemma: apply random g and measure n traps
X~ measure 2n traps

e Let player 1 apply (C' ® X")(I ® g)C" for random C’,r
e et player 1 measure last n qubits (check if outcome is 7)

Result: authenticated state C'(|1)) ® |0™))



Public authentication test

One player performs the test: applies Clifford, measures, ...
All players verify the test through classical MPC

The test can be used:

» to test encodings (as in previous slide);

» to test whether a computation step was executed honestly



Computation



Computation

& 1) G|v)
Protocols ( C'(|¢) ® [0™)) — C'(Gly) @ [0™))) for these G':

e 1-qubit Cliffords
e CNOT (2-qubit Clifford)
e T (non-Clifford)

e (Computational-basis measurement)



Single-qubit Cliffords
@ = C([v) ® 0)°")

\

@ @ Using classical MPC: update

N Rz classical key
C — C :=C(G"®I®")

@ é Then will decode to

RS \ e R3 (C)TC(|w) @ 10)®™)

= Gly) ®10)*"

R4



CNOT
O @2 ©) - iy oo ) e 0m)

Same strategy does not work:
(C1 ® Co)(CNOTT ® I®?™)is not in product form.

Instead:

e Player 1 applies (C!] ® C4)CNOT(C] @ CI) for freshly
random C7, C5 .

 Player 1 executes public authentication test.



Non-Clifford gate -|; ..

Magic-state computation:

8 [¥)

N
Y

7"

T|+)

XC

\_;‘magic state”

Ci1(jy) ®10%)) ®

PC

—T1y) 8

—

Cs(T|y) ®[0™))

Nobody can be trusted to create encoded magic states!




Magic-state generation



Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose”:
@ @ + every player tests n

random states

A A

+ remaining n copies are
v v “pretty good”

@ / G 2. magic-state distillation:
N\ e - + a Clifford circuit

+ remaining copy is “very
good”




Summary

A protocol for multiparty computation of any quantum circuit:

Computationally secure against < k — 1 cheaters (out of £)
Encoded states of size 2n + 1 (vs. kn 4+ 1 in [DNS12))

Computation:

e (Cliffords are simple (CNOT requires quantum
communication & public authentication test)

e T gate: requires kn magic states (vs. n® in [DNS12])

Thank you! &



