Secure Multi-party Quantum Computation with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery, Christian Majenz, Christian Schaffner

Introduction

Multi-party computation (MPC)

55

Input (player i): xi

Output: $f(x_1, ..., x_k)$ e.g., what is the maximum input?

Output (player i): $f_i(x_1, ..., x_k)$ e.g., was my input the highest?

This is the **ideal** situation.

What if there is no

?

Multi-party computation (MPC)

55

We want:

- privacy of inputs
- correctness of outputs

We cannot prevent:

- lying about inputs
- unfairness

Goal: Quantum MPC (MPQC)

This talk: protocol for MPQC

- Up to k-1
- Computationally secure
- gate-by-gate, using $O(k(d + \log(n)))$ quantum rounds for d the {CNOT,T}-depth of the q computation

MPQC: two approaches

- 1. Secret sharing [CGS02]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs
- hope: up to k-1 dishonest

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002)

[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

Introduction

Authentication

Computation
Magic-state generation
Summary

Clifford code

Key: $C \in_R \operatorname{Clifford}_{n+1}$

Encoding: $|\psi\rangle\mapsto C\left(|\psi\rangle\otimes|0\rangle^{\otimes n}\right)$

SUBGROUP OF UNITARIES
GENERATED BY H, \(\sqrt{Z}, \text{CNOT} \)
LOOKS "RANDOM"

TRAPS

Decoding: apply C^{\dagger} , measure traps

Theorem (informal): for any A on n+1 qubits, the probability that A changes $|\psi\rangle$, but is not detected at decoding is very small (2^{-n}).

Bonus: the Clifford code also provides privacy.

Clifford code in MPQC

R₄

- What if the encoding player is dishonest?
- How to do computation?
 Data is unalterable!

Answers: use classical multiparty computation!

Public authentication test

Public authentication test

$$\underbrace{C_6C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)}_{C \text{ UNKNOWN TO ALL}} \text{ PLAYER I CREATED THESE}$$

Using classical MPC:

- Select $g\in_R GL(2n,\mathbb{F}_2)$. Note: $g(y)=0^{2n}$ iff $y=0^{2n}$ Lemma: apply random g and measure n traps pprox measure 2n traps
- Let player 1 apply $(C'\otimes X^r)(I\otimes g)C^\dagger$ for random C',r
- Let player 1 measure last n qubits (check if outcome is r)

Result: authenticated state $C'(|\psi\rangle \otimes |0^n\rangle)$

Public authentication test

One player performs the test: applies Clifford, measures, ...

All players verify the test through classical MPC

The test can be used:

- to test encodings (as in previous slide);
- to test whether a computation step was executed honestly

Introduction Authentication

Computation

Magic-state generation Summary

Computation

Protocols ($C(|\psi\rangle \otimes |0^n\rangle) \mapsto C'(G|\psi\rangle \otimes |0^n\rangle)$) for these G:

- 1-qubit Cliffords
- CNOT (2-qubit Clifford)
- T (non-Clifford)
- (Computational-basis measurement)

Single-qubit Cliffords

$$= C(|\psi\rangle \otimes |0\rangle^{\otimes n})$$

Using classical MPC: update classical key

$$C \mapsto C' := C(G^{\dagger} \otimes I^{\otimes n})$$

Then (6) will decode to

$$(C')^{\dagger}C(|\psi\rangle\otimes|0\rangle^{\otimes n})$$
$$=G|\psi\rangle\otimes|0\rangle^{\otimes n}$$

CNOT

Same strategy does not work:

 $(C_1 \otimes C_2)(CNOT^{\dagger} \otimes I^{\otimes 2n})$ is not in product form.

Instead:

- Player 1 applies $(C_1' \otimes C_2')CNOT(C_1^{\dagger} \otimes C_2^{\dagger})$ for freshly random C'_1, C'_2 .
- Player 1 executes public authentication test.

Non-Clifford gate $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\pi i/4} \end{bmatrix}$

Magic-state computation:

$$C_1(|\psi\rangle\otimes|0^n\rangle)\otimes C_2(T|+\rangle\otimes|0^n\rangle) \mapsto C_3(T|\psi\rangle\otimes|0^n\rangle)$$

Nobody can be trusted to create encoded magic states!

Introduction Authentication Computation

Magic-state generation

Summary

Magic-state generation

- - 1. "cut-and-choose":
 - every player tests n
 random states
 - remaining n copies are "pretty good"
 - 2. magic-state distillation:
 - a Clifford circuit
 - remaining copy is "very good"

Summary

A protocol for multiparty computation of any quantum circuit:

- Computationally secure against $\leq k-1$ cheaters (out of k)
- Encoded states of size 2n+1 (vs. kn+1 in [DNS12])
- Computation:
 - Cliffords are simple (CNOT requires quantum communication & public authentication test)
 - T gate: requires kn magic states (vs. n^k in [DNS12])

Thank you!