Analytic quantum weak coin flipping protocols with arbitrarily small bias

Atul S. Arora, Jérémie Roland, Chrysoula Vlachou

arXiv:1911.13283

QCrypt 2020

Secure two-party computation

Two parties jointly compute an arbitrary function on their inputs without sharing the values of their inputs with the other

Classical

Oblivious Transfer \Rightarrow Bit Commitment \Rightarrow Coin Flipping Perfect security impossible without extra assumptions (e.g. computational hardness)

Quantum

Oblivious Transfer \Leftrightarrow Bit Commitment \Rightarrow Coin Flipping Perfect security is impossible (non-relativistic)

Quantum weak coin flipping is the strongest known primitive with arbitrarily perfect security

Coin flipping ${ }^{1}$

over the telephone

Two distrustful parties, Alice and Bob, wish to remotely generate an unbiased random bit.

- Strong Coin Flipping (SCF)

The parties do not know a priori the preferred outcome of the other

- Weak Coin Flipping (WCF)

The parties have a priori known opposite preferred outcomes

[^0]
Protocol features

Honest is a player who follows the protocol exactly as described.

A	\mathbf{B}	Feature	$\mathbf{P r}(\mathbf{A}$ wins $)$	$\mathbf{P r}(\mathbf{B}$ wins $)$
Honest	Honest	Correctness	$P_{A}=1 / 2$	$P_{B}=1 / 2$
Cheats	Honest	A can bias	P_{A}^{*}	$1-P_{A}^{*}$
Honest	Cheats	B can bias	$1-P_{B}^{*}$	P_{B}^{*}
Cheats	Cheats	No protocol	-	-

A protocol has bias ϵ if neither player can force their desired outcome with probability higher than $\frac{1}{2}+\epsilon$, i.e. the bias is the smallest ϵ such that $P_{A}^{*}, P_{B}^{*} \leq \frac{1}{2}+\epsilon$.

Bounds and best explicit protocols

Classical

Completely insecure $\epsilon=\frac{1}{2}$, unless extra assumptions are made

Quantum

	Bound	Protocol
SCF	$\epsilon \geq{\frac{1}{\sqrt{2}}-\frac{1}{2}^{1}}^{1}$	$\epsilon \rightarrow \frac{1}{\sqrt{2}}^{2} \frac{1}{2}^{2}$ and $\epsilon=\frac{1}{4}^{3}$
WCF	$\epsilon \rightarrow 0^{4,5}$	$\epsilon=\frac{1}{10}^{6}$, numerically $\epsilon \rightarrow 0^{6}$

${ }^{1}$ A. Y. Kitaev, QIP workshop (2003).
${ }^{2}$ A. Chailloux and I. Kerenidis, 50th FOCS, pp. 527-533 (2009).
${ }^{3}$ A. Ambainis, J Comp and Sys Sci 68.2, pp. 398-416 (2004).
${ }^{4}$ C. Mochon, arXiv:0711.4114 (2007).
${ }^{5}$ D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L. Magnin, SIAM J Comp 45.3, pp. 633-679 (2016).
${ }^{6}$ A. S. Arora, J. Roland and S. Weis, 51st ACM SIGACT STOC, pp. 205-216 (2019).

Protocol description

Variables involved: ρ, U
Two SDPs

- P_{A}^{*} is an SDP in $\rho_{B}: P_{A}^{*}=\max \left(\operatorname{tr}\left(\Pi_{A} \rho_{B}\right)\right)$ s.t. the honest player (Bob) follows the protocol.
- Similarly for P_{B}^{*}.

Dual: $\rho \leftrightarrow Z, \max \leftrightarrow \min , P^{*}=\max \leftrightarrow P^{*} \leq$ certificate

A new framework is needed permitting us to find both the protocol and its bias.

Time-dependent point games* (TDPG)

Sequence of frames including points on $x-y$ plane with probability weights assigned

- Starting points: $(0,1)$ and $(1,0)$ with $p=1 / 2$.
- Transitions between frames:

$$
\begin{gathered}
\sum_{z} p_{z}=\sum_{z^{\prime}} p_{z^{\prime}} \\
\sum_{z} \frac{\lambda z}{\lambda+z} p_{z} \leq \sum_{z^{\prime}} \frac{\lambda z^{\prime}}{\lambda+z^{\prime}} p_{z^{\prime}}, \forall \lambda \geq 0
\end{gathered}
$$

- Final point (β, α) with $p=1$.

[^1]
Examples of allowed moves

Merge $\left(n_{g} \rightarrow 1\right)$:

$$
\left\langle x_{g}\right\rangle \leq x_{h}
$$

Split $\left(1 \rightarrow n_{h}\right)$:

$$
\frac{1}{x_{g}} \geq\left\langle\frac{1}{x_{h}}\right\rangle
$$

Raise $\left(n_{g}=n_{h} \rightarrow n_{h}\right)$:

$$
x_{g_{i}} \leq x_{h_{i}}
$$

Transitions expressible by matrices (EBM)

Consider a Hermitian matrix $Z \geq 0$ and let $\Pi^{[z]}$ be the projector on the eigenspace of the eigenvalue z. Then $Z=\sum_{z} z \Pi^{[z]}$. Let $|\psi\rangle$ be a vector (not necessarily normalised). We define the function $\operatorname{Prob}[Z,|\psi\rangle]:[0, \infty) \rightarrow[0, \infty)$ with finite support as

$$
\operatorname{Prob}[Z,|\psi\rangle](z)=\left\{\begin{array}{l}
\langle\psi| \Pi^{[z]}|\psi\rangle \text { if } z \in \operatorname{spectrum}(Z) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Let $g, h:[0, \infty) \rightarrow[0, \infty)$ be two functions with finite supports. The line transition $g \rightarrow h$ is called EBM if there exist two matrices $0 \leq G \leq H$ and a vector $|\psi\rangle$ such that:

$$
g=\operatorname{Prob}[G,|\psi\rangle] \text { and } h=\operatorname{Prob}[H,|\psi\rangle]
$$

For each EBM TDPG there exists a WCF protocol with

$$
P_{A}^{*} \leq \alpha, P_{B}^{*} \leq \beta
$$

Time-independent point games (TIPG)

For an EBM transition $g \rightarrow h$, we define the EBM function

$$
g-h
$$

The set of EBM functions is the same (up to closures) as the set of valid functions.

A function $f(x)$ is valid if $\sum_{x} f(x)=0$ and $\sum_{x} \frac{f(x)}{\lambda+x} \leq 0, \forall \lambda \geq 0$.

For each TIPG there exists an EBM TDPG with the same final frame

Existence of a WCF protocol with $\epsilon \rightarrow 0^{1}$

Family of TIPG ${ }^{2}$ approaching bias

$$
\epsilon=\frac{1}{4 k+2},
$$

where $2 k$ is the number of points involved in the main move of the point game

${ }^{1}$ C. Mochon, arXiv:0711.4114 (2007).
${ }^{2}$ Picture from P. Høyer and E. Pelchat, MA thesis, University of Calgary (2013).

Equivalent frameworks and the proof of existence ${ }^{1,2}$

Protocol

Constructive $\downarrow \Uparrow$ Non-constructive

Time Dependent Point Game (TDPG)

Constructive $\Downarrow \Uparrow$ Constructive

Time Independent Point Game (TIPG)

${ }^{1}$ C. Mochon, arXiv:0711.4114 (2007).
${ }^{2}$ D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L. Magnin, SIAM J Comp 45.3, pp. 633-679 (2016).

TDPG-to-explicit-protocol framework $(\mathrm{TEF})^{1}$

Conversion of a TDPG to an explicit WCF protocol with the corresponding bias, given that for every transition of the TDPG, a unitary satisfying certain constraints can be found

${ }^{1}$ A. S. Arora, J. Roland and S. Weis, 51st ACM SIGACT STOC, pp. 205-216 (2019).

TEF constraints

U is a unitary* matrix acting on $\operatorname{span}\left\{\left|g_{1}\right\rangle,\left|g_{2}\right\rangle, \ldots,\left|h_{1}\right\rangle,\left|h_{2}\right\rangle, \ldots\right\}$, s. t.

$$
U|v\rangle=|w\rangle \quad \text { and } \quad \sum_{i=1}^{n_{h}} x_{h_{i}}\left|h_{i}\right\rangle\left\langle h_{i}\right|-\sum_{i=1}^{n_{g}} x_{g_{i}} E_{h} U\left|g_{i}\right\rangle\left\langle g_{i}\right| U^{\dagger} E_{h} \geq 0
$$

$$
\text { with }|v\rangle:=\frac{\sum_{i} \sqrt{p_{g_{i}}}\left|g_{i}\right\rangle}{\sqrt{\sum_{i} p_{g_{i}}}} \text { and }|w\rangle:=\frac{\sum_{i} \sqrt{p_{h_{i}}}\left|h_{i}\right\rangle}{\sqrt{\sum_{i} p_{h_{i}}}},\left\{\left\{\left|g_{i}\right\rangle\right\}_{i=1}^{n_{g}},\left\{\left|h_{i}\right\rangle_{i=1}^{n_{h}}\right\}\right\}
$$ orthonormal and $E_{h}:=\sum_{i=1}^{n}\left|h_{i}\right\rangle\left\langle h_{i}\right|$. Also, $x_{g_{i}}$ and $x_{h_{i}}$ are the coordinates of the n_{g} and n_{h} points of the initial and final frame, respectively, with corresponding probability weights $p_{g_{i}}$ and $p_{h_{i}}$

Using TEF ${ }^{1}$ a protocol with $\epsilon=\frac{1}{10}$ was constructed analytically and an algorithm was proposed to numerically construct U for lower bias

* it is sufficient to consider orthogonal matrices
${ }^{1}$ A. S. Arora, J. Roland and S. Weis, 51st ACM SIGACT STOC, pp. 205-216 (2019).

$f-$ assignment 1

Given a set of real coordinates $0 \leq x_{1}<x_{2} \cdots<x_{n}$ and a polynomial of degree at most $n-2$ satisfying $f(-\lambda) \geq 0$ for all $\lambda \geq 0$, an f-assignment is given by the function

$$
t=\sum_{i=1}^{n} \underbrace{\frac{-f\left(x_{i}\right)}{\prod_{j \neq i}\left(x_{j}-x_{i}\right)}}_{=: p_{i}}\left[x_{i}\right]=h-g
$$

where h contains the positive part of t and g the negative part (without any common support), viz. $h=\sum_{i: p_{i}>0} p_{i}\left[x_{i}\right]$ and $g=\sum_{i: p_{i}<0}\left(-p_{i}\right)\left[x_{i}\right]$.

- An assignment is balanced if the number of points with negative weights, $p_{i}<0$, equals the number of points with positive weights, $p_{i}>0$. An assignment is unbalanced if it is not balanced.
- When f is a monomial, viz. has the form $f(x)=c x^{q}$, where $c>0$ and $q \geq 0$, we call the assignment a monomial assignment.
- A monomial assignment is aligned if the degree of the monomial is an even number $(q=2(b-1), b \in \mathbb{N})$. A monomial assignment is misaligned if it is not aligned.
${ }^{1}$ C. Mochon, arXiv:0711.4114 (2007).

The f-assignment as a sum of monomial assignments

Consider a set of real coordinates satisfying $0 \leq x_{1}<x_{2} \cdots<x_{n}$ and let $f(x)=\left(r_{1}-x\right)\left(r_{2}-x\right) \ldots\left(r_{k}-x\right)$ where $k \leq n-2$. Let $t=\sum_{i=1}^{n} p_{i}\left[x_{i}\right]$ be the corresponding f-assignment.

Then

$$
t=\sum_{l=0}^{k} \alpha_{l}\left(\sum_{i=1}^{n} \frac{-\left(-x_{i}\right)^{l}}{\prod_{j \neq i}\left(x_{j}-x_{i}\right)}\left[x_{i}\right]\right)
$$

where $\alpha_{l} \geq 0$.
More precisely, α_{l} is the coefficient of $(-x)^{l}$ in $f(x)$.

Solving an assignment

Given an f - assignment $t=\sum_{i=1}^{n_{h}} p_{h_{i}}\left[x_{h_{i}}\right]-\sum_{i=1}^{n_{g}} p_{g_{i}}\left[x_{g_{i}}\right]$ and an orthonormal basis $\left\{\left|g_{1}\right\rangle,\left|g_{2}\right\rangle \ldots\left|g_{n_{g}}\right\rangle,\left|h_{1}\right\rangle,\left|h_{2}\right\rangle \ldots\left|h_{n_{h}}\right\rangle\right\}$, we say that the orthogonal matrix O solves t if

$$
\begin{gathered}
O|v\rangle=|w\rangle \text { and } X_{h} \geq E_{h} O X_{g} O^{T} E_{h}, \\
\text { where }|v\rangle=\sum_{i=1}^{n_{g}} \sqrt{p_{g_{i}}}\left|g_{i}\right\rangle,|w\rangle=\sum_{i=1}^{n_{h}} \sqrt{p_{h_{i}}}\left|h_{i}\right\rangle, \\
X_{h}=\sum_{i=1}^{n_{h}} x_{h_{i}}\left|h_{i}\right\rangle\left\langle h_{i}\right|, X_{g}=\sum_{i=1}^{n_{g}} x_{g_{i}}\left|g_{i}\right\rangle\left\langle g_{i}\right| \text { and } \\
E_{h}=\sum_{i=1}^{n_{h}}\left|h_{i}\right\rangle\left\langle h_{i}\right| .
\end{gathered}
$$

Moreover, we say that t has an effective solution if $t=\sum_{i \in I} t_{i}^{\prime}$ and t_{i}^{\prime} has a solution for all $i \in I$, where I is a finite set.

4 types of monomial assignments: balanced/unbalanced - aligned/misaligned

Analytic solution

Balanced and aligned monomial assignments

Let $m=2 b \in \mathbb{Z}, t=\sum_{i=1}^{n} x_{h_{i}}^{m} p_{h_{i}}\left[x_{h_{i}}\right]-\sum_{i=1}^{n} x_{g_{i}}^{m} p_{g_{i}}\left[x_{g_{i}}\right]$ a monomial assignment over $0<x_{1}<x_{2} \cdots<x_{2 n},\left\{\left|h_{1}\right\rangle,\left|h_{2}\right\rangle \ldots\left|h_{n}\right\rangle,\left|g_{1}\right\rangle,\left|g_{2}\right\rangle \ldots\left|g_{n}\right\rangle\right\}$ an orthonormal basis, and

$$
\begin{gathered}
X_{g}:=\sum_{i=1}^{n} x_{g_{i}}\left|g_{i}\right\rangle\left\langle g_{i}\right| \doteq \operatorname{diag}(\underbrace{0,0, \ldots 0}_{n \text { zeros }}, x_{g_{1}}, x_{g_{2}} \ldots x_{g_{n}}), \\
X_{h}:=\sum_{i=1}^{n} x_{h_{i}}\left|h_{i}\right\rangle\left\langle h_{i}\right| \doteq \operatorname{diag}(x_{h_{1}}, x_{h_{2}} \ldots x_{h_{n}}, \underbrace{0,0 \ldots 0}_{n \text { zeros }}), \\
|v\rangle:=\sum_{i=1}^{n} \sqrt{p_{g_{i}}}\left|g_{i}\right\rangle \doteq(\underbrace{0,0, \ldots 0}_{n \text { zeros }}, \sqrt{p_{g_{1}}}, \sqrt{p_{g_{2}}} \ldots \sqrt{p_{g_{n}}})^{T} \quad \text { and } \quad\left|v^{\prime}\right\rangle:=\left(X_{g}\right)^{b}|v\rangle . \\
|w\rangle:=\sum_{i=1}^{n} \sqrt{p_{h_{i}}}\left|h_{i}\right\rangle \doteq(\sqrt{p_{h_{1}}}, \sqrt{p_{h_{2}}} \ldots \sqrt{p_{h_{n}}}, \underbrace{0,0, \ldots 0}_{n \text { zeros }})^{T} \text { and }\left|w^{\prime}\right\rangle:=\left(X_{h}\right)^{b}|w\rangle,
\end{gathered}
$$

Analytic solution

Balanced and aligned monomial assignments
Then,

$$
O:=\sum_{i=-b}^{n-b-1}\left(\frac{\Pi_{h_{i}}^{\perp}\left(X_{h}\right)^{i}\left|w^{\prime}\right\rangle\left\langle v^{\prime}\right|\left(X_{g}\right)^{i} \Pi_{g_{i}}^{\perp}}{\sqrt{c_{h_{i}} c_{g_{i}}}}+\text { h.c. }\right)
$$

satisfies

$$
X_{h} \geq E_{h} O X_{g} O^{T} E_{h} \quad \text { and } \quad E_{h} O\left|v^{\prime}\right\rangle=\left|w^{\prime}\right\rangle
$$

where $E_{h}:=\sum_{i=1}^{n}\left|h_{i}\right\rangle\left\langle h_{i}\right|, c_{h_{i}}:=\left\langle w^{\prime}\right|\left(X_{h}\right)^{i} \Pi_{h_{i}}^{\perp}\left(X_{h}\right)^{i}\left|w^{\prime}\right\rangle$, and
$\Pi_{h_{i}}^{\perp}:= \begin{cases}\text { projector orthogonal to } \operatorname{span}\left\{\left(X_{h}\right)^{-|i|+1}\left|w^{\prime}\right\rangle,\left(X_{h}\right)^{-|i|+2}\left|w^{\prime}\right\rangle \ldots,\left|w^{\prime}\right\rangle\right\} & i<0 \\ \text { projector orthogonal to } \operatorname{span}\left\{\left(X_{h}\right)^{-b}\left|w^{\prime}\right\rangle,\left(X_{h}\right)^{-b+1}\left|w^{\prime}\right\rangle, \ldots\left(X_{h}\right)^{i-1}\left|w^{\prime}\right\rangle\right\} & i>0 \\ \mathbb{I} & i=0 .\end{cases}$
Analogous are the forms of $\Pi_{g_{i}}^{\perp}$ and $c_{g_{i}}$.

The expressions for the solution O for the other possible types of monomial assignments are similar

Analytic solution

Balanced and aligned monomial assignments

$$
+\text { h.c. }
$$

Summary and conclusions

- Analytical construction of WCF protocols with arbitrarily close to zero bias
- Our approach is simpler as it avoids the - quite technical reduction of the problem from EBM to valid functions
- Analytical solutions in fewer dimensions?

Open questions

- Protocols for the Pelchat-Høyer family ${ }^{1}$ of point games?
- Given the recent bound on the rounds of communication ${ }^{2}$, can we find protocols matching the bounds on resources?
- Noise robustness of the protocols.
- Device independent protocols ${ }^{3}$

[^2]
Acknowledgements

We are thankful to Tom Van Himbeeck, Kishor Bharti, Stefano Pironio and Ognyan Oreshkov for various insightful discussions.

We acknowledge support from the Belgian Fonds de la Recherche Scientifique - FNRS under grant no R.50.05.18.F (QuantAlgo). The QuantAlgo project has received funding from the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union's Horizon 2020 Programme. ASA further acknowledges the FNRS for support through the FRIA grants, $3 / 5 / 5-\mathrm{MCF} / \mathrm{XH} / \mathrm{FC}-16754$ and F

$$
3 / 5 / 5-\text { FRIA } / \text { FC - } 6700 \text { FC } 20759 .
$$

[^0]: ${ }^{1}$ M. Blum, SIGACT News 15.1 , pp.23-27 (1983).

[^1]: * Mochon in arXiv:0711.4114 attributes the point-game formalism to A. Y. Kitaev.

[^2]: ${ }^{1}$ P. Høyer and E. Pelchat, MA thesis, University of Calgary (2013).
 ${ }^{2}$ C. A. Miller, 52 nd ACM SIGACT STOC, pp. 916-929 (2020).
 ${ }^{3}$ N. Aharon, A. Chailloux, I. Kerenidis, S. Massar, S. Pironio and J. Silman, 6th TQC (2011).

