Securing Practical Quantum Cryptography with Optical Power Limiters

Gong Zhang^{1,*}, Ignatius William Primaatmaja², Jing Yan Haw¹, Xiao Gong¹, Chao Wang^{1,†}, and Charles C.-W. Lim^{1,2,‡}

*zhanggong@nus.edu.sg [†]wang.chao@nus.edu.sg [‡]charles.lim@nus.edu.sg

¹Department of Electrical & Computer Engineering, National University of Singapore, Singapore ²Centre for Quantum Technologies,

National University of Singapore, Singapore

Outline

□ Background

□ Importance of power limiter in quantum cryptography

□ Introduction of thermo-optic defocusing

□ Experimental and simulation results

- Possible attack consideration
- □ Application in plug-and-play MDI-QKD

□ Conclusion

Hacking Practical QKD

Detector-blinding attack Makarov 2009		
Receiver laser damage attack Bugge 2		
Time-shift attack Qi 2007, Zhao 2008		
Wavelength attack Huang 2013, Li 2011	Tanat Daabaa	
Back-flash attack Kurtsiefer 2001	larget: Receiver	
Channel calibration Jain 2011	Solution Measurement-device-independent	
Detector deadtime Weier 2011	MDI-QKD	
Spatial efficiency mismatch Rau 2015,		
Trojan-horse attack Gisin 2006, Jain 20	14	
Intensity information Jiang 2012		
Modulation pattern effect Yoshino 2016		
Source laser damage attack Huang 2020 Target: Source		
Phase-remapping attack Fung 2007, Xu 2010		
Phase information Sun 2012, 2015, Tang 2013		

Trojan-Horse Attack

Current countermeasures

- Phase randomize (Reduce *I*_{eve}¹)
- Watchdog detector (Can be bypassed²)
- Passive components such as isolators (Limited degree-of-freedom, one-way application only, high isolation)

Basic idea is to limit the amount of unauthorized input power.

Semi-DI with Energy Bound

- Bound on the mean energy is one way to provide a practical Semi-Device-Independent (Semi-DI) framework.
- Use energy bound to bound the overlap between the prepared states.
- Energy bound could lead to certifiable quantum randomness.

Again, a power limiting device is important here!

Proposal: Quantum Optical Fuse / Power limiter

The device should ideally have the following properties:

- Provides a reliable and characterizable power limiting threshold (in the order of a few photons to hundreds of photons).
- □ If the input energy exceeds the threshold, the device will stop the communication channel.
- □ Cost-effective, passive, and easily replaceable.
- Power limiting effects are independent of other degree of freedoms, e.g., frequency, polarization, etc.

It is timely to develop such devices, for we now have a wide range of security proof methods with possible energy constraints features:

Lucamarini et al 2015, Tamaki et al 2016, Van Himbeeck et al 2019, Pereria et al 2019, Primaatmaja et al 2019, Navarrete et al 2020, just to name a few.

Review of Optical Power Limiter

Fiber damage

Figure 1 Damage to connector endface.

Figure 2 Optical fiber after fuse propagation.

 $10^{2} - 10^{3}$ mW level

- Using thermo-optic effect or optical force to tune the filter center wavelength
- Narrow operation bandwidth, limited extinction ratio
- $10 10^2$ mW level

Nonlinear effect

degenerate TPA.(b) non-degenerate TPA.

Two-photon absorption

$10 - 10^3$ mW level

Thermo-optical defocusing

 $10 - 10^2$ mW level

Our Choice: Thermo-Optical Defocusing

Power Limiter Module

- Negative thermo-optic coefficient of acrylic: $\frac{dn}{dT} = -1.3 \times 10^{-4} K^{-1}$
- Higher absorbed power diverges the input light more
- A tunable diaphragm controls the received power
- Robust and stable performance, compact and cost-effective design

Our Choice: Thermo-Optical Defocusing

Power Limiter Module

- Negative thermo-optic coefficient of acrylic: $\frac{dn}{dT} = -1.3 \times 10^{-4} K^{-1}$
- Higher absorbed power diverges the input light more
- A tunable diaphragm controls the received power
- Robust and stable performance, compact and cost-effective design

Theoretical Modeling

- Angular divergence of a paraxial light ray
 passing through a refractive index gradient
- Absorbed laser power *I* is balanced with the heat transfer mechanism (Assume heat transfer in r-direction only)
- Laser intensity at position (r, z

$$\frac{\partial \theta_r}{\partial z} = \frac{1}{n} \left(\frac{\partial n}{\partial T} \right) \left(\frac{\partial T}{\partial r} \right)$$

$$\alpha I = -\frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

Gaussian
beam shape
osition (r, z)
$$I(r, z) = I(r, 0) \cdot \exp\left(-\alpha z + \frac{\frac{\partial n}{\partial T}Pe^{-\frac{r^2}{a^2}}\left(z - \frac{1}{\alpha}(1 - e^{-\alpha z})\right)}{\pi k n a^2}\right)$$

Absorption

COMSOL simulation

Smith, D. (1969). IEEE Journal of Quantum Electronics, 5(12), 600-607. DeRosa, M. E., et al. (2003). Applied optics, 42(15), 2683-2688.

Input-Output Power Relationship

Prism length

Diaphragm width

Response Time Consideration

Shorter pulse 🔶 Higher output power ?

Pulsed Response Simulation

Wavelength Dependence

Thermo-optic coefficient

$$TOC = \frac{dn}{dT} = \frac{(n^2 - 1)(n^2 + 2)}{6n}(\Phi - \beta)$$

- Electronic polarizability $\Phi > 0$ typically .
- Volumetric expansion β is dominant in . polymer

Material absorption

Consider fiber damage threshold 12.8W ٠

Zhang, Z., et al. (2006). Polymer, 47(14), 4893-4896. Beadie, G., et al. (2015). Applied optics, 54(31), F139-F143. Zhang, X., et al. (2020). Applied Optics, 59(8), 2337-2344. Lucamarini, M., et al. (2015), Physical Review X, 5(3), 031030,

Silicon absorber limit visible light

Laser Damage Attack

 Material could be melted and evaporated under strong laser beam. As a result of the evaporation and assist gas pressure, the material is thrown out of the hole.

• A reflection structure could be implemented to permanently fuse the optical path.

Laser Damage Attack

		690
Property	Value	
Melting Point (K)	404	005 000
Boiling Point (K)	473	9 490
Evaporation rate (g/s)	log w = 5.87- 6.77x10 ³ /T	
		0 200 400 600 80

- Material could be melted and evaporated under strong laser beam. As a result of the evaporation and assist gas pressure, the material is thrown out of the hole.
- A reflection structure could be implemented to permanently fuse the optical path.

Input Laser Power (mW)

Application: Plug-and-Play MDI-QKD

٠

Patent filed: SG Non-Provisional Application No.10202006635S

- Plug-and-play phase-encoding measurement-device-independent (MDI) QKD
 - Robust performance with simple setup.
 - Common laser source for all users, enables identical central wavelength and accurate clock synchronization.
 - Automatically compensate for any birefringence effects and polarization-dependent losses in optical fibers.
- The average Trojan photon number v could provide Eve with information about the encoded phase

Secret Key Rate against THA

Parameters	Value
Detector efficiency	70%
Dark count rate	10 ⁻⁷
Misalignment error	2%
Fiber loss	0.2 dB/km

Consider a repetition rate of 1 GHz, the Trojan-horse photon power is about 1.28 x 10⁻¹⁰ mW

- Assume average Trojan photon leakage v from coherent state (CW and Pulse).
- Proof technique taken here: Primaatmaja, I. W., et al. (2019). Physical Review A, 99(6), 062332.

Conclusions and Outlooks

Ideal model

- Provides a reliable and characterizable power limiting threshold (in the order of a few photons to hundreds for photons).
- If the input energy exceeds the threshold, the device will stop the communication channel.
- Cost-effective, passive, and easily replaceable.
- Power limiting effects are independent of other degree of freedoms, e.g., frequency, polarization, etc.

Our scheme

- Passive power limiter at mW level.
 Using additional attenuation for fewphoton level limitation.
- If the input energy exceeds the threshold, the output power will be limited, and start decrease.
- Cost-effective, passive, and easily replaceable.
- Power limiting effects for both CW and pulsed light, wavelength and polarization independent.
- □ To do: Security analysis of MDIQKD with untrusted light source
- □ To do: Measurement with visible wavelength and high-power laser

Acknowledgement

Department of Electrical & Computer Engineering Faculty of Engineering

Centre for Quantum Technologies

We are hiring postdoctoral researchers (theory/experiment)!

Please contact us at charles.lim@nus.edu.sg for more information.

Securing Practical Quantum Cryptography with Optical Power Limiters

Gong Zhang^{1,*}, Ignatius William Primaatmaja², Jing Yan Haw¹, Xiao Gong¹, Chao Wang^{1,†}, and Charles C.-W. Lim^{1,2,‡}

*zhanggong@nus.edu.sg [†]wang.chao@nus.edu.sg [‡]charles.lim@nus.edu.sg

¹Department of Electrical & Computer Engineering, National University of Singapore, Singapore ²Centre for Quantum Technologies,

National University of Singapore, Singapore

