Experimental realisation of quantum oblivious transfer

Ryan Amiri¹, <u>Robert Stárek²</u>, Michal Mičuda², Ladislav Mišta², Jr., Miloslav Dušek², Petros Wallden³, and Erika Andersson¹

¹ SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

² Department of Optics, Palacký University, Olomouc, Czech Republic

³ LFCS, School of Informatics, University of Edinburgh,10 Crichton Street, Edinburgh EH8 9AB, United Kingdom

QCrypt 2020

Palacký University Olomouc

arXiv:2007.04712

Oblivious transfer – basic idea

- Alice picks bits, x_0 and x_1 . Bob picks bit b.
- Alice and Bob communicate.

Oblivious transfer – basic idea

- Alice picks bits, x_0 and x_1 . Bob picks bit b.
- Alice and Bob communicate. Bob receives x_b .

Oblivious transfer – basic idea

- Alice picks bits, x_0 and x_1 . Bob picks bit b.
- Alice and Bob communicate. Bob receives x_b .
- Alice does not know b. She can guess it at most with probability $A_{OT} = \frac{1}{2} + \varepsilon$.
- Bob does not know $x_{\overline{b}}$. He can guess it at most with probability $B_{OT} = \frac{1}{2} + \varepsilon$.

Oblivious transfer - context

- Cryptographic primitive
- Applications
 - Secure multiparty computation
 - E-voting
 - Signatures
- Similar tasks
 - Bit commitment
 - Coin flipping
 - Both implementable with OT

- Classically theoretically insecure (without computational assumptions)
- Perfect implementation is impossible
 - M. Blum, Three applications of the oblivious transfer, University of California, Berkeley, CA, USA, 1981
 - <u>S. Even, et al., A randomized protocol for</u> <u>signing contracts, Communications of the</u> <u>ACM (1985)</u>
 - <u>O. Goldreich and R. Vainish, How to Solve</u> any Protocol Problem - An Efficiency Improvement, CRYPTO'87, p. 73-86 (1987)
 - <u>J. Kilian, Founding cryptography on oblivious</u> <u>transfer, STOC'88, p. 20-31 (1988)</u>

Quantum oblivious transfer (OT)

- Interesting features of quantum physics
 - Inherent randomness
 - Strong correlations
 - Quantum measurements
 - No-cloning theorem
- QKD great success
- Quantum weak coin flipping arbitrarily secure
- Quantum bit commitment limited cheating
- <u>What about cheating bounds for</u> <u>oblivious transfer?</u>

- <u>C. Mochon, Quantum weak coin</u> <u>flipping with arbitrarily small bias,</u> <u>arXiv:0711.4114 (2007).</u>
- A. Chailloux and I. Kerenidis, Optimal Bounds for Quantum Bit Commitment, FOCS'11, p. 354-362 (2011).
- C. H. Bennet and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, The. Comput. Sci. 100, p. 7-11 (2014)
- H.-K. Lo and H. F. Chau, Is Quantum Bit Commitment Really Possible?, Phys. Rev. Lett. 78, 3410 (1997)
- <u>D. Mayers, Unconditionally Secure</u> <u>Quantum Bit Commitment is</u> <u>Impossible, Phys. Rev. Lett. 78, 3413</u> (1997)

1-2 quantum OT

- Formal definition ...
- Cheating probability $p_c = \max\{A_{OT}, B_{OT}\}$
- What is the achievable cheating probability?

Definition 1. A 1-2 quantum OT protocol is a protocol between two parties, Alice and Bob, such that

- Alice has inputs $x_0, x_1 \in \{0, 1\}$ and Bob has input $b \in \{0, 1\}$. At the beginning of the protocol, Alice has no information about b and Bob has no information about (x_0, x_1) .
- At the end of the protocol, Bob outputs y or Abort and Alice can either Abort or not.
- If Alice and Bob are honest, they never Abort, $y = x_b$, Alice has no information about b and Bob has no information about $x_{b\oplus 1}$.
- $A_{OT} := \sup\{\Pr[Alice \ correctly \ guesses \ b \land Bob \ does \ not \ Abort]\}$ = $\frac{1}{2} + \epsilon_A$
- $B_{OT} := \sup\{\Pr[Bob \ correctly \ guesses \ (x_0, x_1) \land Alice \\ does \ not \ Abort]\} \\ = \frac{1}{2} + \epsilon_B$
 - <u>A. Chailloux, et al., Lower</u>
 <u>Bounds for Quantum Oblivious</u>
 <u>Transfer, Quant. Inf. Comput.</u>
 <u>13, p. 158-177 (2013).</u>

1-2 quantum OT

- Formal definition ...
- Cheating probability
 - $p_c = \max\{A_{OT}, B_{OT}\}$
- What is the achievable cheating probability?

<u>A. Chailloux, et al., Lower</u> <u>Bounds for Quantum Oblivious</u> <u>Transfer, Quant. Inf. Comput.</u> <u>13, p. 158-177 (2013).</u>

• Formal definition ...

Definition 4. 1-2 quantum Semi-random OT, or simply Semi-random OT, is a protocol between two parties, Alice and Bob, such that

- Alice chooses two input bits $(x_0, x_1) \in \{0, 1\}$ or Abort.
- Bob outputs two bits (c, y) or Abort.
- If Alice and Bob are honest, they never Abort, $y = x_c$, Alice has no information about c and Bob has no information on $x_{c\oplus 1}$. Further, x_0, x_1 and c are uniformly random bits ⁹.
- $A_{OT} := \sup \{ \Pr[Alice \ correctly \ guesses \ c \land Bob \ does \ not \ Abort] \}$ = $\frac{1}{2} + \epsilon_A$
- $B_{OT} := \sup\{\Pr[Bob \ correctly \ guesses \ (x_0, x_1) \land Alice \ does \ not \ Abort]\}$ = $\frac{1}{2} + \epsilon_B$

- Equivalent to OT up to classical processing
- Security of generic protocol?
- Specific protocol is introduced

- Equivalent to OT up to classical processing
- Most general protocol
- Security expressed in terms of respective protocol state fidelities F (honest)
- Lower bound is set.
- $A_{OT} \ge \frac{1}{2}(1+F)$
- $B_{OT} \ge 1 F$
- $B_{OT}^{PS} = \frac{1}{4} \left(1 + \frac{1}{2} \sqrt{1 2F} + \frac{1}{2} \sqrt{1 + 2F} \right)$

- Tightening the security bounds (for symmetric and pure states)
- $A_{OT} \ge \frac{1}{2}(1+F)$
- $B_{OT} \ge 1 F$
- $B_{OT}^{PS} = \frac{1}{4} \left(1 + \frac{1}{2} \sqrt{1 2F} + \frac{1}{2} \sqrt{1 + 2F} \right)$
- $\min_F(\max\{A_{OT}, B_{OT}\}) \approx 0.749$

- Tightening the security bounds (for symmetric and pure states)
- $A_{OT} \ge \frac{1}{2}(1+F)$
- $B_{OT} \ge 1 F$
- $B_{OT}^{PS} = \frac{1}{4} \left(1 + \frac{1}{2} \sqrt{1 2F} + \frac{1}{2} \sqrt{1 + 2F} \right)$
- $\min_F(\max\{A_{OT}, B_{OT}\}) \approx 0.749$

A semi-random OT protocol based on unambiguous measurements

Bob's detection - principle

Bob's outcome probabilities – transfer measurement

Bob's decoding table

Outcome	С	x _c
0,+	0	0
0,-	1	0
1,+	1	1
1,-	0	1

Bob's outcome probabilities - test measurement

Bob's detection

Bob's outcome probabilities – transfer measurement

Bob's outcome probabilities – test measurement

Alice is *naively* cheating.

- Encoding states are eigenkets of Bob's projector.
- Alice knows Bob's c.
- *n* rounds of communication.
- Test performed \sqrt{n} times.
- Protocol aborts with $p = 1 2^{-n/2}$.

Photonic proof-of-principle

Qubit encoding

- SPDC source
- Path and polarization encoding
- One photon two qubits
- In Alice cheating strategy we entangle the signal photon with the idler
- Transcoding into different degrees of freedom is in principle possible

<i>x</i> ₀ , <i>x</i> ₁	encoded qubits		
0,0	$ \uparrow H\rangle$		40
0,1	$ +D\rangle$		
1,0	$ -A\rangle$		No.
1,1	$ \downarrow V\rangle$	ŧ	•

Detection

- Inverse to a preparation
- Photon-counting using SPAD
- Sequential measurement
- Four-port POVM in principle possible

Detection

- Inverse to a preparation
- Photon-counting using SPAD
- Sequential measurement
- Four-port POVM in principle possible

Transfer protocol with honest parties

• $P_{corr.} = 0.9943(9)$ • $P_{abort} = 0.013(1)$

Cheating Bob

- Bob does minimum-error measurement
- $B_{OT} = 0.718(5)$
- Theoretical value: 0.729

Cheating Alice

- Alice prepare $|\Sigma\rangle = (|00\rangle|0\rangle + |++\rangle|1\rangle)/\sqrt{2}$
- Conditional photonic quantum gates are used
- Alice measures on her qubit
- X basis for transfer, Z basis for testing
- Theoretically she can't be detected

Cheating Alice

Cheating Alice

- $F_{\text{exp|the}} = 0.921, P = 0.884$
- $A_{OT} = 0.77(1)$
- $p_{abort} = 0.059(6)$

Is the protocol practically feasible?

- Protocol requires the same elements as BB84 protocol.
- Instead of a single qubit, we transfer two qubits.
- Honest execution is therefore feasible. Quantum memory is not required.

- <u>Liao, S. et al. Satellite-to-ground</u> <u>quantum key distribution, Nature</u> <u>549, 43–47 (2017)</u>
- A. Boaron et al., Secure Quantum Key Distribution over 421 km of Optical Fiber, Phys. Rev. Lett. 121, 190502 (2018)

How practical are the attacks?

- Bob's attack is feasible.
- Alice's attack is experimentally challenging.

- <u>Liao, S. et al. Satellite-to-ground</u> <u>quantum key distribution, Nature</u> <u>549, 43–47 (2017)</u>
- A. Boaron et al., Secure Quantum Key Distribution over 421 km of Optical Fiber, Phys. Rev. Lett. 121, 190502 (2018)

Conclusion

- Concept of semi-random OT, equivalent to OT
- A feasible protocol for 1-2 OT, requiring only BB84 setup
- Proof-of-principle photonic experiment
- Symmetric pure states are not optimal in terms of security
- Full paper: Imperfect 1-out-of-2 quantum oblivious transfer: bounds, a protocol, and its experimental implementation,

arXiv:2007.04712

Acknowledgements

- EPSRC: EP/K022717/1, EP/M013472/1, EP/I007002/1
- Palacky University IGA-PrF-2020-009.

Engineering and Physical Sciences Research Council

Palacký University Olomouc