Experimental realisation of quantum oblivious transfer

Ryan Amiri ${ }^{1}$, Robert Stárek ${ }^{2}$, Michal Mičuda², Ladislav Mišta² ${ }^{2}$ Jr., Miloslav Dušek ${ }^{2}$, Petros Wallden ${ }^{3}$, and Erika Andersson ${ }^{1}$
${ }^{1}$ SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
${ }^{2}$ Department of Optics, Palacký University, Olomouc, Czech Republic
${ }^{3}$ LFCS, School of Informatics, University of Edinburgh,10 Crichton Street, Edinburgh EH8 9AB, United Kingdom

Oblivious transfer - basic idea

- Alice picks bits, x_{0} and x_{1}. Bob picks bit b.
- Alice and Bob communicate.

Oblivious transfer - basic idea

- Alice picks bits, x_{0} and x_{1}. Bob picks bit b.
- Alice and Bob communicate. Bob receives x_{b}.

Oblivious transfer - basic idea

- Alice picks bits, x_{0} and x_{1}. Bob picks bit b.
- Alice and Bob communicate. Bob receives x_{b}.
- Alice does not know b. She can guess it at most with probability $A_{O T}=1 / 2+\varepsilon$.
- Bob does not know $x_{\bar{b}}$. He can guess it at most with probability $B_{O T}=1 / 2+\varepsilon$.

Oblivious transfer - context

- Cryptographic primitive
- Applications
- Secure multiparty computation
- E-voting
- Signatures
- Similar tasks
- Bit commitment
- Coin flipping
- Both implementable with OT
- Classically theoretically insecure (without computational assumptions)
- Perfect implementation is impossible
- M. Blum, Three applications of the oblivious transfer, University of California, Berkeley, CA, USA, 1981
- S. Even, et al., A randomized protocol for signing contracts, Communications of the ACM (1985)
- O. Goldreich and R. Vainish, How to Solve any Protocol Problem - An Efficiency Improvement, CRYPTO'87, p. 73-86 (1987)
- J. Kilian, Founding cryptography on oblivious transfer, STOC'88, p. 20-31 (1988)

Quantum oblivious transfer (OT)

- Interesting features of quantum physics
- Inherent randomness
- Strong correlations
- Quantum measurements
- No-cloning theorem
- QKD - great success
- Quantum weak coin flipping arbitrarily secure
- Quantum bit commitment limited cheating
- What about cheating bounds for oblivious transfer?
- C. Mochon, Quantum weak coin flipping with arbitrarily small bias, arXiv:0711.4114 (2007).
- A. Chailloux and I. Kerenidis, Optimal Bounds for Quantum Bit Commitment, FOCS'11, p. 354-362 (2011).
- C. H. Bennet and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, The. Comput. Sci. 100, p. 7-11 (2014)
- H.-K. Lo and H. F. Chau, Is Quantum Bit Commitment Really Possible?, Phys. Rev. Lett. 78, 3410 (1997)
- D. Mayers, Unconditionally Secure Quantum Bit Commitment is Impossible, Phys. Rev. Lett. 78, 3413 (1997)

1-2 quantum OT

- Formal definition ...
- Cheating probability

$$
p_{c}=\max \left\{A_{O T}, B_{O T}\right\}
$$

- What is the achievable cheating probability?

Definition 1. A 1-2 quantum OT protocol is a protocol between two parties, Alice and Bob, such that

- Alice has inputs $x_{0}, x_{1} \in\{0,1\}$ and Bob has input $b \in$ $\{0,1\}$. At the beginning of the protocol, Alice has no information about b and Bob has no information about $\left(x_{0}, x_{1}\right)$.
- At the end of the protocol, Bob outputs y or Abort and Alice can either Abort or not.
- If Alice and Bob are honest, they never Abort, $y=$ x_{b}, Alice has no information about b and Bob has no information about $x_{b \oplus 1}$.
- $A_{O T}:=\sup \{\operatorname{Pr}[$ Alice correctly guesses $b \wedge$ Bob does not Abort]\}
$=\frac{1}{2}+\epsilon_{A}$
- $B_{O T}:=\sup \left\{\operatorname{Pr}\left[\right.\right.$ Bob correctly guesses $\left(x_{0}, x_{1}\right) \wedge$ Alice does not Abort $]\}$
$=\frac{1}{2}+\epsilon_{B}$
- A. Chailloux, et al., Lower

Bounds for Quantum Oblivious Transfer, Quant. Inf. Comput.

1-2 quantum OT

- Formal definition ...
- Cheating probability

$$
p_{c}=\max \left\{A_{O T}, B_{O T}\right\}
$$

- What is the achievable cheating probability?

1-2 semi-random quantum OT

- Formal definition ...

Definition 4. 1-2 quantum Semi-random OT, or simply Semi-random OT, is a protocol between two parties, Alice and Bob, such that

- Alice chooses two input bits $\left(x_{0}, x_{1}\right) \in\{0,1\}$ or Abort.
- Bob outputs two bits (c, y) or Abort.
- If Alice and Bob are honest, they never Abort, $y=x_{c}$, Alice has no information about c and Bob has no information on $x_{c \oplus 1}$. Further, x_{0}, x_{1} and c are uniformly random bits ${ }^{9}$.
- $A_{O T}:=\sup \{\operatorname{Pr}[$ Alice correctly guesses $c \wedge$ Bob does not Abort $]\}$
$=\frac{1}{2}+\epsilon_{A}$
- $B_{\text {OT }}:=\sup \left\{\operatorname{Pr}\left[\right.\right.$ Bob correctly guesses $\left(x_{0}, x_{1}\right) \wedge$ Alice does not Abort $]\}$
$=\frac{1}{2}+\epsilon_{B}$

1-2 semi-random quantum OT

- Equivalent to OT up to classical processing

- Security of generic protocol?
- Specific protocol is introduced

1-2 semi-random quantum OT

- Equivalent to OT up to classical processing
- Most general protocol
- Security expressed in terms of respective protocol state fidelities F (honest)
- Lower bound is set.
- $A_{O T} \geq \frac{1}{2}(1+F)$
- $B_{\text {OT }} \geq 1-F$
- $B_{O T}^{P S}=\frac{1}{4}\left(1+\frac{1}{2} \sqrt{1-2 F}+\frac{1}{2} \sqrt{1+2 F}\right)$

1-2 semi-random quantum OT

- Tightening the security bounds (for symmetric and pure states)
- $A_{\text {OT }} \geq \frac{1}{2}(1+F)$
- $B_{\text {OT }} \geq 1-F$
- $B_{O T}^{P S}=\frac{1}{4}\left(1+\frac{1}{2} \sqrt{1-2 F}+\frac{1}{2} \sqrt{1+2 F}\right)$
- $\min _{F}\left(\max \left\{A_{O T}, B_{O T}\right\}\right) \approx 0.749$

1-2 semi-random quantum OT

- Tightening the security bounds (for symmetric and pure states)
- $A_{\text {OT }} \geq \frac{1}{2}(1+F)$
- $B_{\text {OT }} \geq 1-F$
- $B_{O T}^{P S}=\frac{1}{4}\left(1+\frac{1}{2} \sqrt{1-2 F}+\frac{1}{2} \sqrt{1+2 F}\right)$
- $\min _{F}\left(\max \left\{A_{O T}, B_{O T}\right\}\right) \approx 0.749$

A semi-random OT protocol based on unambiguous measurements

Bob's detection - principle

Bob's outcome probabilities - transfer measurement

Bob's decoding table

Outcome	c	x_{c}
$0,+$	0	0
$0,-$	1	0
$1,+$	1	1
$1,-$	0	1

Bob's outcome probabilities - test measurement

Bob's detection

Bob's outcome probabilities - transfer measurement

Bob's outcome probabilities - test measurement

Alice is naively cheating.

- Encoding states are eigenkets of Bob's projector.
- Alice knows Bob's c.
- n rounds of communication.
- Test performed \sqrt{n} times.
- Protocol aborts with $p=1-2^{-n / 2}$.

Photonic proof-of-principle

Qubit encoding

- SPDC source
- Path and polarization encoding
- One photon - two qubits
- In Alice cheating strategy we entangle the signal photon with the idler
- Transcoding into different degrees of freedom is in principle possible

x_{0}, x_{1}	encoded qubits
0,0	$\|\uparrow H\rangle$
0,1	$\|+D\rangle$
1,0	$\|-A\rangle$
1,1	$\|\downarrow V\rangle$

Detection

- Inverse to a preparation
- Photon-counting using SPAD
- Sequential measurement
- Four-port POVM in principle possible

Detection

Transfer protocol with honest parties

- $P_{\text {corr. }}=0.9943(9)$
- $P_{\text {abort }}=0.013(1)$

Cheating Bob

- Bob does minimum-error measurement
- $B_{O T}=0.718(5)$
- Theoretical value: 0.729

Cheating Alice

- Alice prepare $|\Sigma\rangle=(|00\rangle|0\rangle+|++\rangle|1\rangle) / \sqrt{2}$
- Conditional photonic quantum gates are used
- Alice measures on her qubit
- X basis for transfer, Z basis for testing
- Theoretically she can't be detected

Preparation
${ }^{1}$ Analysis

Cheating Alice

Cheating Alice

- $F_{\text {exp|the }}=0.921, P=0.884$
- $A_{\text {OT }}=0.77(1)$
- $p_{\text {abort }}=0.059(6)$

Is the protocol practically feasible?

- Protocol requires the same elements as BB84 protocol.
- Instead of a single qubit, we transfer two qubits.
- Honest execution is therefore feasible. Quantum memory is not required.

- Liao, S. et al. Satellite-to-ground quantum key distribution, Nature 549, 43-47 (2017)
- A. Boaron et al., Secure Quantum Key Distribution over 421 km of Optical Fiber, Phys. Rev. Lett. 121, 190502 (2018)

How practical are the attacks?

- Bob's attack is feasible.
- Alice's attack is experimentally challenging.

- Liao, S. et al. Satellite-to-ground quantum key distribution, Nature 549, 43-47 (2017)
- A. Boaron et al., Secure Quantum Key Distribution over 421 km of Optical Fiber, Phys. Rev. Lett. 121, 190502 (2018)

Conclusion

- Concept of semi-random OT, equivalent to OT
- A feasible protocol for 1-2 OT, requiring only BB84 setup
- Proof-of-principle photonic experiment
- Symmetric pure states are not optimal in terms of security
- Full paper: Imperfect 1-out-of-2 quantum oblivious transfer: bounds, a protocol, and its experimental implementation, arXiv:2007.04712

Acknowledgements

- EPSRC: EP/K022717/1, EP/M013472/1, EP/I007002/1
- Palacky University IGA-PrF-2020-009.

Engineering and Physical Sciences Research Council

Palacký University Olomouc

