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Oblivious transfer — basic idea

* Alice picks bits, xy and x;. Bob picks bit b.
e Alice and Bob communicate.
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Oblivious transfer — basic idea

Hmm, what
envelope
Bob picked?

Hmm, what was
In the other
envelope?

Alice picks bits, xy, and x;. Bob picks bit b.
Alice and Bob communicate. Bob receives x;,.

Alice does not know b. She can guess it at most with probability
AOT =1 4 ¢.

Bob does not know xj. He can guess it at most with probability
BOT =1 + ¢.



Oblivious transfer - context

* Cryptographic primitive

* Applications

e Secure multiparty
computation

* E-voting
* Signatures
e Similar tasks
* Bit commitment
* Coin flipping

* Both implementable
with OT

* Classically theoretically
insecure (without
computational
assumptions)

* Perfect implementation
is impossible
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Quantum oblivious transfer (OT)

* Interesting features of quantum
physics
* Inherent randomness
e Strong correlations
e Quantum measurements
* No-cloning theorem

* QKD — great success

* Quantum weak coin flipping -
arbitrarily secure

e Quantum bit commitment -
limited cheating

e What about cheating bounds for
oblivious transfer?
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1-2 quantum OT

Formal definition ...

Cheating probability

pc = max{Aor, Bor}

What is the achievable cheating
probability?

Definition 1. A 1-2 quantum OT protocol is a pro-
tocol between two parties, Alice and Bob, such that

= Alice has inputs xg,x1 € {0,1} and Bob has input b €
{0,1}. At the beginning of the protocol, Alice has no
information about b and Bob has no information about
(x07 3}'1) .

= At the end of the protocol, Bob outputs y or Abort and
Alice can either Abort or not.

= [f Alice and Bob are honest, they never Abort, y =
xp, Alice has no information about b and Bob has no
information about Tyg.

= Aor = sup{Pr[Alice correctly guesses b N Bob does
not Abort|}

_1
=35 €4

# Bor := sup{Pr[Bob correctly guesses (xo,x1) N Alice

does not Abort]}

1

* A. Chailloux, et al., Lower
Bounds for Quantum Oblivious
Transfer, Quant. Inf. Comput.
13, p. 158-177 (2013).
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1-2 quantum OT

Formal definition ...

Cheating probability

pc = max{Aor, Bor}

What is the achievable cheating
probability?

0.75
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* A. Chailloux, et al., Lower
Bounds for Quantum Oblivious
Transfer, Quant. Inf. Comput.
13, p. 158-177 (2013).
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1-2 semi-random quantum OT

* Formal definition ...

Definition 4. 1-2 quantum Semi-random OT, or simply
Semi-random OT, is a protocol between two parties, Alice
and Bob, such that

= Alice chooses two input bits (xo,x1) € {0,1} or Abort.
* Bob outputs two bits (c,y) or Abort.

= [f Alice and Bob are honest, they never Abort, y = x.,
Alice has no information about ¢ and Bob has no infor-
mation on T.g1. Further, xg,x1 and c are uniformly
random bits °.

* Aot = sup{Pr[Alice correctly guesses ¢ A Bob does
not Abort|}

* Bor := sup{Pr[Bob correctly guesses (xo,x1) N\ Alice
does not Abort]}

-1




1-2 semi-random quantum OT

* Equivalent to OT up =X
to classical =1
processing

e Security of generic
protocol?

 Specific protocol is
introduced



1-2 semi-random quantum OT

e Equivalent to OT up to
classical processing

* Most general protocol

e Security expressed in
terms of respective

protocol state . i
fidelities F (honest) Upest' E— Vi),
* Lower bound is set. | R
#\ ) |
¢ AOT (1 + F) U [—>

.BOT21_F
+ BSS =5 (1+ SV1—2F + V1 +2F)




1-2 semi-random quantum OT

* Tightening the security bounds
(for symmetric and pure states)

Aor 25 (1+F)

Bor=1—F

Bof =2(1+ V1= 2F + V1 +2F)
ming(max{Ayr, Bor}) = 0.749

0.5 2/3 0.75 1



1-2 semi-random quantum OT

* Tightening the security bounds
(for symmetric and pure states)

Aor 25 (1+F)

Bor=1—F

Bof =2(1+ V1= 2F + V1 +2F)
ming(max{Ayr, Bor}) = 0.749

2/3 0.729 0.749 |

|

0.5 2/3 0.75 1



A semi-random OT protocol based on
unambiguous measurements

< ‘ encoded qubits Bob’s meas. E
basis

|00)
0,1 | + +) =X Transfer
=10
1,0 | ——) _ Test, Alice declares 0,1 or 1,0
1,1 111) = X1

Test, Alice declares 0,0 or 1,1

D —
classical
state
declaration

abort



inciple

jon - princ

Bob’s detect

Bob’s decoding table

Bob’s outcome probabilities — transfer measurement

Bob’s outcome probabilities — test measurement




Bob’s detection

Bob’s outcome probabilities — transfer measurement
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Bob’s outcome probabilities — test measurement

Alice is naively cheating.

Encoding states are
eigenkets of Bob’s
projector.

Alice knows Bob’s c.
n rounds of
communication.
Test performed \/n
times.

Protocol aborts with
p=1—2""2,



Photonic proof-of-principle




Qubit encoding " path andl polarzat
e Path and polarization

encoding

* One photon — two qubits

* In Alice cheating strategy we
entangle the signal photon
with the idler

* Transcoding into different
degrees of freedom is in
principle possible

encoded qubits

0,0 | T H) o <«
0,1 | + D) KN
1,0 | — 4) Yo, o,
1,1 1L V) § o



Detection

Inverse to a preparation
Photon-counting using SPAD
Sequential measurement
Four-port POVM in principle
possible



. * Inverse to a preparation
D ete Ct I O n * Photon-counting using SPAD
e Sequential measurement

e Four-port POVM in principle
PBS @ HWP possible




parties
IR
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Transfer protocol with honest
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Papore = 0.013(1)
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Cheating Bob <
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Bob does minimum-error measurement
Bor = 0.718(5)
Theoretical value: 0.729 ‘_>
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Cheating Alice

Alice prepare |Z) = (]00)|0) +| + +)|1))/V2
Conditional photonic quantum gates are used
Alice measures on her qubit

X basis for transfer, Z basis for testing
Theoretically she can’t be detected

Preparation | Analysis
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Alice , Bob
|
spa — U
Bo{ % A, 1 Tl)?\
pol— =~ HHH S U N

Ae pOl U3 : )v\




Cheating Alice




Cheating Alice

I — === [ i — — —
T T T T T T T T

0.501
=0.25-

0.00 1

0.5
0.0

1,1

1,0
Cests C

0,1

0,0

0.921, P = 0.884
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Pavort = 0.059 (6)



s the protocol practically
feasible?

* Protocol requires the same elements as BB84 protocol.

* Instead of a single qubit, we transfer two qubits.

* Honest execution is therefore feasible. Quantum memory is not
required.

b  Transmitter

Liao, S. et al. Satellite-to-ground
guantum key distribution, Nature
549, 4347 (2017)

A. Boaron et al., Secure Quantum
Key Distribution over 421 km of
Optical Fiber, Phys. Rev. Lett. 121,
190502 (2018)
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How practical are the attacks?

e Bob’s attack is feasible.
e Alice’s attack is experimentally challenging.

“&
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549, 4347 (2017)

A. Boaron et al., Secure Quantum
Key Distribution over 421 km of

Optical Fiber, Phys. Rev. Lett. 121,

190502 (2018)
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Conclusion

e Concept of semi-random OT, equivalent to OT

* A feasible protocol for 1-2 OT, requiring only
BB84 setup

* Proof-of-principle photonic experiment

* Symmetric pure states are not optimal in terms
of security

* Full paper: Imperfect 1-out-of-2 quantum
oblivious transfer: bounds, a protocol, and its
experimental implementation,
arXiv:2007.04712
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