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Results — overview

» We study the simulation of random quantum objects, i.e. random

quantum states and random unitary operations

» We develop a theory of their stateful simulation, a quantum analogue of

“lazy sampling”
» For random states, we develop an efficient protocol for stateful simulation

» For random unitaries, we show that simulation can be done in polynomial

space

» As an application, we design a quantum money scheme that is

unconditionally unforgeable and untraceable.



Introduction



Randomness...

...is extremely useful. Applications:
» All of cryptography
» Monte Carlo simulation

» Randomized algorithms

> ...
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Another example: random function
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Another example: random function

Function f: {0,1}" — {0,1}" such that f(x) €z {0,1}" independently
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Another example: random function

Function f: {0,1}" — {0,1}" such that f(x) €z {0,1}" independently
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Quantum states and operations

Quantum state: unit vector Quantum operation: unitary
|p) €S c C¥ matrix U € U(2") c C***

Strictly spealing: (Compact Lie-)group
|$) € Pru_y(C), of unitary
Froje«:ﬁve space 2" X 2 =makrices

——

Really nice mathematical objects with a
natural notion of a uniform distribution!
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Example application: Haar money

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let’'s make money out of it!

Haar money (JLS "19):
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Example application: Haar money

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let’'s make money out of it!

Can the Bawnle
" sampi& such a
random skate?

Haar money (JLS "19):

Unforgeable v P
Al Untraceable v
|

|4) €4 S C C¥ No, but they can simulate it!

Two options:

» Use pseudorandom quantum state, computationally
secure untraceable quantum money (JLS "19)

p Use stateful simulation, unconditionally secure
untraceable quantum money (AMR)
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Limitations of stateless simulation

Stateless simulation scheme < {|¢,)} ek, pick kK € K, output copies of | ¢,)
Problem:

|$) # |w) quantum states = | YO, |w)®" can be distinguished with probability
pn) - 1 (n - o)

Also works for random states sampled according to different measures.

Statelessness implies query limit!

Similar argument for unitaries.
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Going to both churches...

A random state and part of an entangled state look the same.

Random!

= stateful oracle simulation without any randomness, just by maintaining entanglement

with the distinguisher!

What do £ copies of a Haar random state look like to the distingusher?

From representation theory: E ) [|1//)(1//|®”ﬂ] = Tgym?Cd
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Stateful simulation algorithm

| Fact: £ copies of a Haar random state look like a single Haar random state on '?,
the symmetric subspace Sym,, , of C!QC!® ... ® C?looks like half a :
__maximally entangled state on Sym,, @ Symy,

Strategy:
1. Maintain maximally entangled state of two copies of Sym,, ,.
2. On query: extend it from £ to £ 4+ 1 by acting on one of the copies only.
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Technical contributions

» Several new algorithmic tools for garbageless quantum state preparation

» Concrete algorithms: approximate algorithms for the extension of

maximally entangled states on symmetric subspaces by an additional copy
» Stateful simulation of random unitaries: combining several nice ingredients.
- first (we think) quantum application of exact unitary designs (Kane "15)

- Exact adaptive-to-nonadaptive reduction using “postselection”

- Uniqueness property of the Stinespring dilation



Summary, open questions

Summary:
» We develop a theory of stateful simulation of random quantum primitives.

» Random quantum states can be approximately simulated efficiently using a stateful
algorithm

» Random unitaries can be simulated exactly in a space-efficient way using a stateful
algorithm.

» The random state simulator can be used to construct unconditionally secure untraceable
quantum money.

Open questions:
» Can we simulate random unitaries efficiently?

» (From JLS "19) Construct pseudorandom unitaries!



