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Quantum communication networks 2

Photonic resources

Encoding in properties of quantum states of light
Propagation in optical fibre or free-space channels
Computation in network nodes (clients, servers, memories)

Security
Untrusted network users,
devices, nodes

| | P Efficiency
S e 8 Optimal use of
A ) { . .
: communication resources
Applications

Analysis and implementations using quantum photonics to demonstrate a provable quantum
advantage in security and efficiency for communication and distributed computing tasks




Applications of qguantum communication networks

Quantum computing Leader election, fast byzantine agreement,...
Few qubit fault tolerant il Clock mﬂmﬂﬂlbﬂm quantum
= Blind quantum computing, simple leader
Quanbum memory = election and agreement protocols....
2
Entanglement generation : Device independent protocols
=
=
L : i
Quantum key distribution, secure
Prepare and measure identification....
Quantum key distribution (no end-to-end
Trusted repeater s
Stage of quantum network Examples of known applications

S. Wehner et al., Science 2018
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1. Some reminders on QKD

2. Criteria and measures of performance of QKD systems
3. Examples of configurations and current challenges

4. Applications beyond QKD

5. Testbeds and use cases



Securing network links: QKD

Landmark application of quantum communication that has driven the field for many years
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Thanks to the fundamental principles of qguantum physics (no cloning theorem,

superposition, entanglement & nonlocality), it is possible to detect eavesdropping on
the communication link

No need for assumptions on computational power of eavesdropper — information-
theoretic security (ITS)

Change of paradigm with respect to classical algorithms offering computational security



QKD and secure message exchange :

QKD does not offer a stand-alone cryptographic solution for secure message exchange
between two trusted parties

The key agreement (or key establishment, exchange, amplification, negotiation,...)
protocol needs to be combined with authentication and message encryption algorithms

Many possible scenarios, combining classical (including post-quantum) and quantum

solutions:
Authentication Key agreement Message encryption
e.g. with post-quantum e.g. with post-quantum or QKD (ITS) e.g. with AES or one-
or ITS digital signatures replacing vulnerable asymmetric algorithms time pad (ITS)

No ubiquitous solution
Trade-offs between security risks and ease of implementation, depending on use case

QKD offers information-theoretic, long-term security of sensitive data, and is robust
against powerful ‘Store now, Decrypt later’ attacks



QKD in practice

State-of-the-art of point-to-point fiber-optic QKD in 2016
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A rich field with constant innovation in both theoretical protocols and practical
implementations

What are relevant performance measures and interesting criteria for use cases?
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Performance measures and use case criteria

At what distance can the secret key be generated?

Major difference with classical cryptographic systems: inherent limitation due to
optical fiber loss

— QKD networks and satellite communication

What is the right topology for the QKD network?

Can | accept prepare-and-measure schemes and trusted nodes?

Or do | need (some) untrusted nodes? Device independence?

Is it possible to ensure upgradability towards long-term quantum networks?
Define appropriate network interfaces

What is the right satellite orbit and payload?

LEO/MEQO/GEO satellites differ vastly in terms of geographic coverage, loss
budget, requirements for pointing and tracking system

When are satellite constellations or nanosatellite technologies useful?



Performance measures and use case criteria

At what rate can the secret key be generated?

Important difference with classical systems: theoretical bounds for repeaterless links
— New protocols and multiplexing techniques

What is the security status?

Composable security proof including finite-size effects
In terms of practical security, identification of side channels and countermeasures
Complexity of classical post-processing techniques

How cost-effective are the systems?

Compatibility with telecom network infrastructure —
mutualized use important given the deployment cost
Dark or lit fibers

To what degree is it possible to use photonic
integration circuits?

Maturity and availability of components
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BB84 with decoy states

Prepare-and-measure, weak coherent pulses, single-photon detectors
High Technology Readiness Level, record-breaking implementations
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BB84 with decoy states

Transmitter
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Trusted nodes
Detector side channels
Single-photon detectors

Si transmitter PIC, P. Sibson et al., Optica 2016



Continuous variable QKD

Prepare-and-measure, coherent states, coherent detectors

High compatibility with telecom networks, multiplexing with classical signals,

high level of photonic integration
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80 km, P. Jouguet et al.,
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Continuous variable QKD

Bandwidth-efficient

CV-QKD Local LO: no related side channels, no LO intensity

limitation, no multiplexing, constraints in laser linewidth
Transmitted LO

Pulsed operation CW pulse shaping techniques: optimal use of spectrum, avoid
inter-symbol interference, use of pilots, challenging Digital

Homodyne detection Signal Processing, security

Gaussian modulation

Integrated coherent receivers: shot noise limited, low noise,
high bandwidth -
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Security proof for QPSK discrete modulation
Technique may be extended to other modulations

S. Ghorai et al., Phys. Rev. X 2019



Continuous variable QKD

_ Electrical control circuit
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MDI and Twin-Field QKD

Prepare and joint measure, weak coherent pulses, single-photon detectors
Resilience to detector side channels, compatibility with star topology (less trusted
nodes), TF beats repeaterless bounds, high loss resilience
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M. Lucamarini’s tutorial, QCrypt 2018
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Entanglement-based QKD

Entangled states, single-photon detectors

Less trusted nodes, path to device independence, high loss resilience
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Device independence challenging
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Quantum advantage for advanced tasks

Key distribution is central primitive in the trusted two-party security model

In other configurations many more functionalities
— Framework for demonstrating quantum advantage (even without ITS)

Secret sharing, entanglement verification, Quantum computing Leader election, fast byzantine agreement, .
authenticated teleportation, anonymous
communication, conference key agreement, Few qubit fault tolerant £ wockapnciontzalioe, detrtaed gustitm
secure multi-party computation =
Blind quantum computing. simple leader
Quantum memory - election and
agreemeant protocols....

Random number generation, quantum E
money, communication complexity 2L S = O R P
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. . . . . . . Quantum key distribution, secure
Bit commitment, coin flipping, oblivious L entication,..
transfer, digital signatures, position-based

m key distribation {no end-to-end
cryptography Trstad repsater L
Quantum protocol 700, Wiki.veriqloud.fr Stage of quantum network Examples of known applications

How do we make abstract protocols compatible with experiments? — protocols typically
require inaccessible resources and are vulnerable to imperfections

When do we claim a quantum advantage? — fair comparison with classical resources



Quantum coin flipping

Allows two distrustful parties to agree on
a random bit, ideally with zero bias

Fundamental primitive for distributed
computing

Theoretical analysis allows for
honest abort to include
imperfections

C: Circulator
BS: Beam Splitter
D0, D1: APD detectors
PM: Phase Modulator

FM: Faraday Mirror

WATT: Variable Attenuator
PBS: Polarization Beam Splitter
et DL: Delay Line
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Unforgeable quantum money

Wiesner’s original idea (1973) of using the
uncertainty principle for security

But needs quantum verification and is not
robust to imperfections
Considered hard to implement

New protocol with classical verification
and BB84-type states
Based on challenge questions

Photodiode

CW laser

i AOM VOA
e 99/1 BS

CLIENT

VENDOR

1/ preparation

2/ transaction

a/ random
challenge

b/ answer
validation

-~

Polanzation
controller

[ = . =

G}

U
fre

Client's credit card (prepared by the Bank)

s EEE NS S SR EEEE .,

qubit pair
sequence

e

]

1

1

1

1

1

[ |

1
1] 1]

1

1

1

1

1

1

1

1

1

.

HWP  pgs &

‘\
T ||||-::'
I'n,
-
' D

-

Vendor's credit card reader

B T




Unforgeable quantum money
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Rigorously satisfies security condition for unforgeability
— quantum advantage with trusted terminal

General security framework for weak coherent states and anticipating guantum memory
— minimize losses and errors using SDP techniques for both trusted and untrusted terminal

M. Bozzio et al., npj Quantum Info. 2018 & Phys. Rev. A 2019



Quantum network protocols

Proof-of-principle verification of
multipartite entanglement in the
presence of dishonest parties

W. McCutcheon et al., Nature Commun. 2016

Requires high performance resources
Very small loss tolerance
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A. Unnikrishnan et al., Phys. Rev. Lett. 2019

Theoretical framework for composability

R. Yehia et al., 2004.07679
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Testbeds

Practical testbed deployment is crucial for

interoperability, maturity, network integration aspects and topology, use case
benchmarking, standardization of interfaces

SECOQC QKD network, 2008
South Africa, Swiss, Tokyo, UK QC Hub networks
China 2000 km, 32-node network, including satellite link

OPCII <~ QKD

| Beijing

Telco operators NPLE

QKD developers

TELECOM
ParisTech

Suppliers of classical SSIT
network equipment @ ( 4

Academic groups
i i CFO’ aeshlens NCItycOm o]
End users ity | =5 Thaleshgria “ e

L4
feri UNIVERSITE
7>/ DE GENEVE

Shanghai |



Open European QKD network
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Large-scale network deployment is challenging
How many fibers are available? Dark, lit, in pairs? Too high attenuation?
Key management system in place?...



Towards a Quantum Communication Infrastructure

DECLARATION ON A

QUANTUM COMMUNICATION

INFRASTRUCTURE

FOR THE EU

Terrestrial
segment

24 Member States

have signed a declaration agresing to work
together to explore how to build a quantum
communication infrastructure (QCI across
Eutope, boosting European capabiities in
quantum technologies, cybersecunty am
Industrial competitiveness.

The countnes taking part in the intiative are
Austria, Belgum, Bulgaria, Croatia, Cyprus,
Czech Republic, Denmark, Finland, France,
Germany. Greece, Hungary, Italy, Lithuania,
Luxembourg, Malta, Netherlands, Poland,
Portugal, Romania, Slovakia, Slovenia,
Spain and Sweden

<hEU #EuroQO

+ case
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Open
testbeds

Terrestrial and space segments

Focus on improving cost, range, network
integration, quantum/classical coexistence,
security, applications for the quantum
internet, standards and certification

Top-down approach, driven by real use cases



Use cases

Data centre storage and interconnection

Connection between headquarters and
disaster recovery centres

| Data backup center |
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Conclusion

Quantum communication networks will be part of the future quantum-safe infrastructure
The quantum communication toolbox is rich and increasingly advanced
Current rapid advancements address the multiple, interlinked challenges

Quantum technologies need to integrate into standard network and cryptographic
practices to materialize the global quantum network vision

A future quantum communication infrastructure can address a range of use cases with
high security requirements in configurations of interest
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